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Abstract
We propose a probabilistic testing algorithm that determines with constant probability if two curves
are similar w.r.t. the discrete Fréchet distance or if they are ‘ω-far’ (for 0 < ω < 2) from being similar,
i.e., more than an ω-fraction of the two curves must be ignored for them to become similar. The
algorithm performs O( t

ω log t
ω ) queries where a query returns the set of vertices of the curve that lie

within a radius ε of a specified vertex of the other curve and t corresponds to a property of the two
curves. We present a class of curves for which t is su!ently small so that the algorithm is sublinear.
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1 Introduction

We initiate a study of property testing for the discrete Fréchet distance. Typically in property

testing, we are given access to a (large) data set and the goal is to very quickly assess

whether the data has a certain property. Instead of the classical notation of correctness, a

property testing algorithm is considered correct if it can satisfy the following two conditions,

with a probability close to 1: First, if the input has the desired property, the algorithm

must return accept and second, if the input is ‘far’ from having the property, the algorithm

should reject the input. For more details on property testing, see [13, 1, 7]. Computational

geometry has a long tradition of using randomization and sampling to speed up algorithmic

approaches [12, 9, 10, 8]. Property testing has received some attention within computational

geometry [6, 3, 4, 5, 11, 2], but is much less explored compared to other areas.

2 Preliminaries and problem definition

Let (M, d) be a metric space. We say a curve P in (M, d) is an ordered point sequence

→p1, . . . , pn↑ with vertices pi ↓ M for all i = 1, . . . , n. We define the length of P to be
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Figure 1 Left: Mε for the curves on the right with a minimum cost monotone Manhattan path.

ω(P ) =
∑n→1

i=1 d(pi, pi+1). The subcurve of P between pi and pj is denoted by P [i, j]. A curve

P is called t-straight if for any two vertices pi and pj in P , we have ω(P [i, j]) ↔ t · d(pi, pj).

Given two curves P = →p1, . . . , pn↑ and Q = →q1, . . . , qn↑, we say that an ordered sequence

C of elements in the n times n integer lattice [n] ↗ [n] is a coupling of P and Q, if it

starts in (1, 1), ends in (n, n) and for any consecutive tuples (i, j), (i↑, j↑
) in C it holds that

(i↑, j↑
) ↓ {(i + 1, j), (i, j + 1)}. We define the discrete Fréchet distance1

between P and Q as

DF (P, Q) := min
coupling C

max
(i,j)↓C

d(pi, qj).

The free space matrix of P and Q with distance value ε is an n ↗ n matrix Mω, where the

i-th column corresponds to the vertex pi of P and the j-th row corresponds to the vertex

qj of Q. The entry Mω[i, j] has the value 0 if d(pi, qj) ↔ ε and 1 otherwise.
2

A monotone
Manhattan path C is a path through the free space matrix that always moves one step up or

one step to the right. We define the cost of such a path as c(C) =
∑

(i,j)↓C Mω[i, j]. Note

that DF (P, Q) ↔ ε if and only if there exists a monotone Manhattan path with cost 0 from

(1, 1) to (n, n). Our analysis is based on a property of the free space matrix. We first define

this property and then link the property to a certain class of well-behaved input curves.

↭ Definition 1 (t-local). Let M be a free space matrix of curves P and Q. We say that M
is t-local if, for any tuples (i1, j1) and (i2, j2) with M [i1, j1] = 0 = M [i2, j2], it holds that
|i1 ↘ i2| ↔ t · (2 + |j1 ↘ j2|) and |j1 ↘ j2| ↔ t · (2 + |i1 ↘ i2|).

↭ Lemma 2. Let P and Q be t-straight curves with edge lengths in [ε/ϑ, ϑε] for some constant
ϑ ≃ 1. Then, Mω is O(t)-local.

For a proof, we refer to the full version. In the full version, we show that our approach

also works if the lengths of the edges are bounded by a constant multiple of any fixed value.

↭ Definition 3 (query). We have access to the free space matrix via an oracle that returns a
sorted list of indices of all zero-entries in the queried row or column. We call this a query.

↭ Definition 4 ((ϖ, ε)-far). Given two curves P and Q consisting of n vertices each3, we say
that P and Q are (ϖ, ε)-far from each other if there exists no monotone Manhattan path from
(1, 1) to (n, n) in the ε-free space matrix of cost ϖn or less.

1 The classical definition of the discrete Fréchet distance allows diagonal steps in the coupling. An easy
adaptation of our proofs to the definition with diagonal steps can be found in Appendix ??.

2 Note we use 0 and 1 in switched roles compared to the conventions in the literature.
3 For ease of notation, our analysis assumes the input curves have the same number of vertices.
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↭ Definition 5 (Fréchet-tester). Assume we are given query-access to two curves P and Q,
and we are given values ε > 0 and 0 < ϖ < 2. If the two curves have discrete Fréchet distance
at most ε, we must return ‘yes’, and if they are (ϖ, ε)-far from each other w.r.t. the discrete
Fréchet distance, the algorithm must return ‘no’, with probability at least 4

5 .

Our goal is to design a Fréchet-tester that performs as few (sublinear in n) queries as possible.

3 Testing the discrete Fréchet distance

The idea of Algorithm 1 is to sample a number of columns and rows and check whether there

is locally a monotone Manhattan path of cost zero possible. For proofs, see the full version.

↭ Definition 6 (Permeability). We say a block [i, i↑
] of consecutive columns (resp., rows) from

index i to index i↑ is permeable if there exists a monotone Manhattan path of cost zero that
starts in column (resp., row) i and ends in column (resp., row) i↑.

If a column or row contains only one-entries, we call it a barrier-column or barrier-row.

Algorithm 1 Fréchet-Tester1(M, t, ω)

1. If M [1, 1] = 1 or M [n, n] = 1 then return ‘no’.

2. repeat ⇐
24t
ε ⇒ times:

3. j ⇑ sample an index uniformly at random from [n].

4. if row j or column j of M is a barrier-column or barrier-row then return ‘no’.

5. K ⇑ ⇐
εn
32t ⇒ ↘ 1, ω ⇑ ⇐

128t
ε ⇒, let J be a set of intervals and set J ⇑ ⇓.

6. for i = 0, . . . , ⇔log2 ω↖ do:

7. I ⇑ sample ⇐
16n

2i+1K ⇒ di!erent indices uniformly at random from {0, 1, . . . , n
2i+1 ↘ 2}.

8. for each j ↓ I do: add [j2
i+1, (j + 2)2

i+1
] to J.

9. foreach [i, j] ↓ J do
10. if block [i, j] of consecutive columns is not permeable then return ‘no’.

11. if block [i, j] of consecutive rows is not permeable then return ‘no’.

12. return ‘yes’.

↭ Theorem 7. Let P and Q be curves with n vertices such that their free space matrix is
t-local and t is known. Then, Algorithm 1 is a Fréchet-tester that needs O(

t
ε log

t
ε ) queries.

References
1 Arnab Bhattacharyya and Yuichi Yoshida. Property Testing: Problems and Techniques.

Springer Nature, 2022.
2 Bernard Chazelle, Ding Liu, and Avner Magen. Sublinear geometric algorithms. In Proceedings

of the thirty-fifth annual ACM symposium on Theory of computing, pages 531–540, 2003.
3 Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum spanning

tree weight in sublinear time. SIAM Journal on Computing, 34(6):1370–1379, 2005. doi:

10.1137/S0097539702403244.
4 Artur Czumaj, Funda Ergün, Lance Fortnow, Avner Magen, Ilan Newman, Ronitt Rubin-

feld, and Christian Sohler. Approximating the weight of the Euclidean minimum span-
ning tree in sublinear time. SIAM Journal on Computing, 35(1):91–109, 2005. doi:

10.1137/S0097539703435297.
5 Artur Czumaj and Christian Sohler. Estimating the weight of metric minimum spanning trees

in sublinear time. SIAM Journal on Computing, 39(3):904–922, 2009. doi:10.1137/060672121.

3



4 Property Testing of Curve Similarity

6 Artur Czumaj, Christian Sohler, and Martin Ziegler. Property testing in computational
geometry. In European Symposium on Algorithms, pages 155–166. Springer, 2000.

7 Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.
8 J.E. Goodman, J. O’Rourke, and C.D. Tóth. Handbook of discrete and computational geometry,

third edition. 01 2017. doi:10.1201/9781315119601.
9 Sariel Har-Peled. Geometric Approximation Algorithms. American Mathematical Society,

USA, 2011.
10 Jirí Matousek. Lectures on discrete geometry, volume 212 of Graduate texts in mathematics.

Springer, 2002.
11 Morteza Monemizadeh. Facility Location in the Sublinear Geometric Model. In Approx-

imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2023), volume 275 of LIPIcs, pages 6:1–6:24, 2023. doi:10.4230/LIPIcs.

APPROX/RANDOM.2023.6.
12 Ketan. Mulmuley. Computational geometry : an introduction through randomized algorithms.

Prentice-Hall, Englewood Cli"s, N.J, 1994.
13 Dana Ron. Algorithmic and analysis techniques in property testing. Foundations and Trends®

in Theoretical Computer Science, 5(2):73–205, 2010.

4



Separation Anxiety: A Well-Separated Pair

Decomposition and Separator for c-packed Graphs

Lindsey Deryckere !

School of Computer Science, The University of Sydney, Australia

Joachim Gudmundsson !

School of Computer Science, The University of Sydney, Australia

André van Renssen !

School of Computer Science, The University of Sydney, Australia

Yuan Sha !

School of Computer Science, The University of Sydney, Australia

Sampson Wong !

Department of Computer Science, The University of Copenhagen, Denmark

Abstract

We prove two fundamental properties of c-packed graphs: that there exists a linear-size well-separated

pair decomposition under the graph metric, and there exists a constant size balanced separator. We

apply these properties to obtain a tree cover of constant size, an exact distance oracle of near-linear

size and an approximate distance oracle of linear size.
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1 Introduction

The c-packedness property [6], proposed in 2010, is a geometric property that captures the
spatial distribution of the edges in a graph. A graph is c-packed if, for any radius r and any
ball of radius r, the length of the edges contained in the ball is at most c · r. Driemel, Har-
Peled and Wenk [6] introduced the c-packedness property for polygonal curves, and showed
that one can compute the Fréchet distance between a pair of c-packed curves in near-linear
time. In 2013, Gudmundsson and Smid [11] adapted the c-packedness definition to graphs.
So far the study of c-packed graphs has been limited to Frechet distance problems [3, 9, 10].
An open problem is whether they have applications beyond Fréchet distance problems.

We provide the first deterministic construction of a linear-size WSPD and O(c)-size
balanced separator that are independent of the spread of the c-packed metric. We use
the separator and WSPD to obtain a tree cover of constant size, an exact distance oracle
of near-linear size and an approximate distance oracle of linear size. Our deterministic
construction of the WSPD is, to the best of our knowledge, the first that does not depend
on the aspect ratio of the metric space.

1.1 Related Work

Well-Separated Pair Decompositions (WSPD) are used for compact representation of the
quadratic distances between pairs of points in a metric. For metrics that allow for a sub-
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quadtratic size WSPD, they have therefore been used as fundamental tools to approximate
solutions to a range of proximity problems that require looking at the distances between all
pairs of points, such as nearest neighbour, diameter, stretch and minimum spanning tree.
For a point set in Rd, where d is considered a constant, Callahan and Kosaraju [4] showed
that there exists a WSPD with separation factor ω of size O(ωd

n) that can be computed in
O(n log n + ω

d
n) time. In contrast to this, we show that for c-packed graphs, the size of the

WSPD is not exponential in d, while maintaining that the size is linear.
Balanced separators of sublinear size have been found for a variety of graphs [1, 8, 14, 16].

They have been used as a fundamental tool in devising e!cient algorithms for graphs [1,8,15]
and in numerical analysis [13, 16]. We show that c-packed graphs admit an O(c)-sized
balanced separator.

Dvo"ák and Norin [7] showed that if a graph admits a small size balanced separator, it
also has small treewidth. Combined with our separator results this implies that c-packed
graphs have treewidth O(c). Chaudhuri and Zaroliagis [5] designed an exact distance oracle
whose preprocessing time is single exponential in the treewidth of the graph. In contrast to
these results, our algorithms do not incur any terms exponential in c.

2 A Well-Separated Pair Decomposition for c-packed Graphs

We construct a tree that fulfills a similar purpose to split trees but for graph distances (which
are metric) between points. We call this new type of tree a ε-connected tree (ε-CT). Each cell,
corresponding to a cube s, of the ε-connected tree is a ε-connected set, meaning that points
contained in the cell are within a graph distance of at most ε · diam(s) from one another. To
construct the ε-CT, we use a bottom up approach. The leaves of the compressed quadtree
are already ε-connected sets. At higher levels of the compressed quadtree, we consider the
ε-connected sets of its children, and merge together pairs of previously ε-connected sets that
are also a ε-connected set in the higher level. To obtain an e!cient running time, we make
two observations. First, when computing the ε-connected sets for a higher level, it su!ces
to maintain a vertex representative for each ε-connected set of the lower level. Second, to
check if a pair of sets are ε-connected, it su!ces to check whether their representatives are
path-connected in the cube centered at the cell but with double its radius.

To upper bound the graph diameter of the ε-connected set in each cell of the ε-CT we
compute the length of intersection of edges with the cell and the 3d surrounding cells in a
canonical grid. To do this e!ciently, we construct a data structure that can be queried for
the total length of all edges that can contribute to a ε-connected component contained in a
cell. We obtain the following theorem.

↭ Theorem 1. Given a c-packed graph G in Rd, for fixed d, one can construct a WSPDG

with separation factor ω of size O(c3
ωn) in O(cn log n + c

3
ωn) time, using O(cn) space.

3 A Separator Theorem for c-packed Graphs

We start with the ring separator of Har-Peled and Mendel [12], which states that for a point
set in Rd, one can e!ciently compute a pair of balls so that n/2ϑ

3 of the points are inside the
inner ball, and n/2ϑ

3 of the points are outside the outer ball, where ϑ is the doubling constant
of Rd. Using the ring separator, we construct a max-flow instance in a similar fashion to
Gudmundsson et al. [10] to locate a cut of size O(c). This cut (1 → 1/2ϑ

3)-separates the
graph, in that it separates the graph into two components each with at most n · (1 → 1/2ϑ

3)
points. We obtain the following theorem.

6
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s(u), u → Q

s+(u)

u1 → T u2 → T u3 → T

Q T

Figure 1 An illustration of iteration j of the algorithm constructing the c-connected tree.

↭ Theorem 2. Given a c-packed graph G in Rd, where d is fixed, with n vertices, one can
find a separator of size O(c) that (1 → 1

2ω3 )-separates G, in O(c2
n) time.

Â

B̂

r

p

Figure 2 An example of a max-flow instance to locate a cut of size O(c) where the vertices in Â

are the sources and B̂ the sinks. The value of the min-cut in the figure is 4.

4 Distance Oracles and a Small Tree Cover for c-packed Graphs

We combine our separator with standard techniques [15] to construct an exact distance oracle.
We use this to construct a tree cover following the approach of the celebrated “Dumbbell
Theorem” [2]. The main di!culty lies in proving the packing lemmas required for establishing
the empty-region property. A dumbbell tree, which connects the dumbbells in a group
hierarchically, is built for each group of dumbbells. The c-packedness property and the c-CT
enable us to do range searching and e!ciently build the dumbbell trees. The tree cover
immediately implies a (1 + ϖ)-approximate distance oracle for the c-packed metric.
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Abstract
We study the smallest intersecting and enclosing ball problems in Euclidean spaces for input objects
that are compact and convex. They link and unify many problems in computational geometry and
machine learning. We show that both problems can be modeled as zero-sum games, and propose
an approximation algorithm for the former. Specifically, the algorithm produces the first results in
high-dimensional spaces for various input objects such as convex polytopes, balls, ellipsoids, etc.
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1 Introduction

Given n convex compact objects !1, . . . , !n in d-dimensional Euclidean space, the smallest
intersecting ball (SIB) problem is to find a ball with the smallest radius r

→
that intersects

every !i, while the smallest enclosing ball (SEB) problem is to find the ball with the smallest

radius R
→

that encloses every !i. See Figure 1 for 2D examples of these two problems.

The SEB problem has attracted significant attention in the past decades [3, 16, 6], whereas

the SIB problem is less discussed and the understanding of SIB lags behind that of SEB.

In earlier research [2, 12], SIB are usually considered a variant of SEB. Indeed, they are

identical when the input are singleton sets. Nevertheless, as the complexity of the input

structure increases, the divergence between these two problems becomes more evident and

the SIB problem manifests greater versatility. This is demonstrable even when there are

only two objects, !1 and !2: when !1 is a compact convex set and !2 is a single point, the

SIB problem is equivalent to finding the nearest point (Euclidean projection) of !2 in the

region of !1, and r
→

is half the distance from !1 to !2; when !1 and !2 are both convex

compact sets, the SIB problem becomes finding the shortest line segment (a.k.a. the shortest

connector) that connects these two sets, and r
→

is half the minimum distance between them.

The dual problem of minimum connector is to find the hyperplane that separates !1 and !2
with the largest margin [7], which corresponds to the support vector machine problems in

machine learning [1, 8]. See Figure 2 for examples of SIB in di!erent cases.

Given the diversity of the SIB problem, one can reasonably anticipate that it poses more

substantial computational challenges than SEB. Indeed, numerous algorithms have been

proposed for solving the SEB problem, including exact and approximation algorithms [15, 13],

using optimization or coreset techniques [9, 3], and in parallel or streaming settings [6, 5],

but for SIB, most algorithms are merely designed for solving it in fixed dimensions [2, 10].

In this work, we endeavor to narrow the gap in the understanding of these two problems.

We show that both the SIB and SEB problems can be modeled as two-player zero-sum games,

which is inspired by the seminal work of Clarkson et. al. [6] in sublinear optimization. Based

on the new formulation, we propose the first approximation algorithm for the SIB problem

in arbitrary dimensions in the unit-cost RAM model, which leverages recent advances in

symmetric cone problems [4, 19]. Additional details on the SIB algorithm can be found in

the full-length preprint [18]. Software implementing the algorithm is available at [17].
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2 Smallest Intersecting and Enclosing Balls

Figure 1 Examples of the problems in 2D spaces, where the blue objects are the input and red
circles are the solutions. Left: the smallest intersecting ball. Right: the smallest enclosing ball.

Figure 2 Many faces of the SIB problem. Left: the SEB of a point set. Middle: the nearest point
(Euclidean projection) in a convex set. Right: the shortest connector (minimum distance).

2 SIB and SEB as Zero-Sum Games

We use → to denote concatenations of vectors, or Cartesian products of sets and vector

spaces. For instance, →n
i=1 ui denotes the concatenation of n vectors, namely (u1, . . . , un).

Consider the zero-sum game minp↑P maxq↑Q f(p, q). We say (p→
, q→

) is a Nash equilibrium
i! f(p→

, q→
) ↑ f(p, q→

), ↓p ↔ P and f(p→
, q→

) ↗ f(p→
, q), ↓q ↔ Q. Moreover, f(p→

, q→
) is the

value of the game. Let V := →n
i=1 !i, X be the convex hull of the input, and Y defined as:

Y :=

{ n
→
i=1

(yi, si) ↔
n
→
i=1

d+1
: ↘yi↘ ↑ si, ↓i ↔ [n] and

n∑

i=1
si = 1

}
,

which can be viewed as the Cartesian product of n Euclidean balls whose radii sum to one.

↭ Theorem 1. The SIB problem can be modeled as the following zero-sum game:

min
(x,v1,...,vn)↑X ↓V

max
y↑Y

( n
→
i=1

(
x ≃ vi

0

) )↔
y.

A Nash equilibrium (denoted as (x→
, v→

1 , . . . , v→
n, y→

)) of the game always exist, and the value
of the game is r

→. The ball B(x→
, r

→
) is intersecting every !i, and v→

i ↔ B(x→
, r

→
) ⇐ !i.

↭ Theorem 2. The SEB problem can be modeled as the following zero-sum game:

min
x↑X

max
(y,v1,...,vn)↑Y↓V

( n
→
i=1

(
x ≃ vi

0

) )↔
y.

A Nash equilibrium (denoted as (x→
, y→

, v→
1 , . . . , v→

n)) of the game always exist, and the value
of the game is R

→. The ball B(x→
, R

→
) is enclosing every !i.
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Table 1 Summary of the results for the SIB problem

Input Objects Previous Work Our Result

Convex Polytopes O(M)† [10] O( R2(N+nd) log n
ω2 )

Axis-Aligned Bounding Boxes O(n)† [11] O( R2nd log n
ω2 )

Euclidean Balls O( n
ω(d→1)/2 ) [14] O( R2nd log n

ω2 )

Ellipsoids - O(nd
ε + R2nd2 log n

ω2 )

Note: d is the dimensionality. n is the number of objects. M is the total number of points. N is the number

of nonzeros in the input. R is the ratio between D and r
→
. ω is the matrix multiplication exponent.

†
Running time of exact algorithms for problems in fixed dimensions.

It is worth noting that the SIB game is a bilinear zero-sum game, where the objective

function is linear for both min- and max-player. On the other hand, the SEB game is not

bilinear as the function is not linear (and neither convex nor concave) for the max-player.

3 Algorithms

Unlike the SEB problem that is extensively studied in the literature, most algorithms for

the SIB problem are designed for fixed dimensions with limited types of input objects such

as convex polytopes [10] and axis-aligned bounding boxes [11]. The only result for SIB in

high-dimensional space is restricted to input of Euclidean balls that are pairwise disjoint [14].

Benefit from our new formulation for the SIB problem, we can utilize techniques for

bilinear zero-sum games to design an approximation algorithm for general input objects in

arbitrary dimensions. Specifically, we say (x, r) is an (1 + ε)-approximate solution of the

SIB problem if the ball B(x, r) intersects every !i and r ↑ (1 + ε)r
→
. The algorithm works

as follows: in each iteration, we update y using an online optimization algorithm over Y,

and let (x, v1, . . . , vn) be the best response in X ⇒ V against y. Then it can be shown that

the average point of the past iterates converges to an approximate Nash equilibrium of the

SIB game, which provides an approximate solution of the SIB problem.

↭ Theorem 3. Let D be the diameter of the input and let R =
D
r↑ . Suppose the best response

can be computed in O(S) time. Then there is an iterative algorithm that computes an
(1 + ε)-approximate solution of the SIB problem with running time O(

R2(S+nd) log n
ω2 ).

The complexity results in the unit-cost RAM model for the SIB problem with specific

input are shown in Table 1. See [18] for detailed analyses of our results. On the other hand,

no existing algorithm can find Nash equilibria for the SEB game due to its non-bilinear

nature. We hope for further advancement on the SEB problem under the new formulation.
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Abstract
The fairness of clustering algorithms has gained widespread attention across various areas in
machine learning. In this paper, we study fair k-means clustering in Euclidean space. Given a
dataset comprising several groups, the fairness constraint requires that each cluster should contain
a proportion of points from each group within specified lower and upper bounds. Due to these
fairness constraints, determining the locations of k centers and finding the induced partition are quite
challenging tasks. We propose a novel “Relax and Merge” framework that returns a (1 + 4ω + O(ε))-
approximate solution, where ω is the approximate ratio of an o!-the-shelf vanilla k-means algorithm
and O(ε) can be an arbitrarily small positive number. If equipped with a PTAS of k-means, our
solution can achieve an approximation ratio of (5 + O(ε)) with only a slight violation of the fairness
constraints, which improves the current state-of-the-art approximation guarantee. Furthermore,
using our framework, we can also obtain a (1 + 4ω + O(ε))-approximate solution for the k-sparse

Wasserstein Barycenter problem, which is a fundamental optimization problem in the field of optimal
transport, and a (2 + 6ω)-approximate solution for the strictly fair k-means clustering with no
violation, both of which are better than the current state-of-the-art methods. In addition, the
empirical results demonstrate that our proposed algorithm can significantly outperform baseline
approaches in terms of clustering cost.
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23:2 Relax and Merge: A Framework for Solving Fair k-Means

1 Introduction

In this paper, we consider the problem of (ω, ε)-fair k-means clustering that was initially
proposed by [4] and then generalized by [2].Informally speaking, we assume that the given
dataset P consists of m groups of points, and the “fairness” constraint requires that in each
obtained cluster, the points from each group should take a fraction between pre-specified
lower and upper bounds. [2] showed that a ϑ-approximate algorithm for vanilla k-means can
provide a (2 + →

ϑ)2- approximate solution for (ω, ε)-fair k-clustering with a slight violation
on the fairness constraints. Here, "violation" refers to situations where the fairness constraints
are not satisfied in the clustering solution. For example, if a fairness constraint requires each
cluster to contain at least 40% of members from a certain group, then a cluster with only
30% would constitute some violations.

Furthermore, [3] studied the “strictly” fair k-means clustering problem, where it requires
that the number of points from each group should be uniform in every cluster. Another
problem closely related to fair k-means is the so-called “k-sparse Wassertein Barycenter
(WB)” [1] . This is a fundamental concept in optimal transport theory, and it represents the
“average" or central distribution of a set of probability distributions. The formal definitions
are shown in appendix. The formal version of this paper has been published at ICLR 2025.

2 Our contributions

Our key idea relies on an important observation, where we find that the fair k-means problem
is inherently related to a classic geometric structure, “ϖ-approximate centroid set”, which
was firstly proposed by [6]. Roughly speaking, given a dataset, an ϖ-approximate centroid set
should contain at least one point that approximately represents the centroid location of any
subset of this given dataset. It means that the ϖ-approximate centroid set contains not only
the approximate centroids based on the Voronoi diagram, but also the approximate centroids
of those potential fairness-preserving clusters.

Inspired by the above observation, we illustrate the relationship between fair k-means and
ϖ-approximate centroid set first, and then propose a novel Relax-and-Merge framework. In
this framework, we relax the constraints on the number of clusters k; we focus on utilizing fair
constraints to cluster the data into small and fair clusters, which are then merged together
to determine the positions of k cluster centers. As shown in Table 1, our result is better
than the state of the art works [2, 3]. Equipped with a PTAS for k-means problem (e.g., the
algorithm from [5]), our algorithm yields a 5 + O(ϖ) approximation factor.

We also present two important extensions from our work. The first extension is an
(1 + 4ϑ + O(ϖ)) solution for k-sparse Wasserstein Barycenter. The second one is about strictly
fair k-means. We give a refined algorithm that yields a no-violation solution with a (2 + 6ϑ)
approximation factor, which is better than the state of the art work [3].

In general, there are two stages in clustering with fair constraints. The first stage is to
find the proper locations of clustering centers, and the second stage is to assign all the client
points to the centers by solving an LP. The previous approaches often use the vanilla k-means
in the first stage to obtain the location of centers, and then take the fairness into account in
the second stage [2, 3]. In our proposed framework, we aim to shift the consideration of fair
constraints to the first stage, so as to achieve a lower approximation factor in the final result.
Our algorithm can be summarized in the following two steps:

Relax: We construct a relaxed solution T , i.e., an ϖ-approximate centroid set, as
the "potential" set of clustering centers. Here, we relax the size constraint of centers to be
polynomial of n rather than exactly k, so as to achieve a su!ciently low cost. Then, we

14
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Table 1 Comparison of the approximation ratios for fair k-means and k-sparse WB. The “general
case” includes (ϑ, ϖ)-fair k-means, strictly (ϑ, ϖ)-fair k-means and k-sparse WB.

Algorithms Approximation ratio When ω = 1 + O(ε) Note on the quality
Bera et al.,2019[2] (2 + ↑

ω)2 9 + O(ε) general case
Schmidt et al.,2020[7] 5.5ω + 1 6.5 + O(ε) two groups only
Böhm et al.,2021[3] (2 + ↑

ω)2 9 + O(ε) strictly only, no violation
Yang & Ding,2024[8] (2 + ↑

ω)2 9 + O(ε) k-sparse WB
Algorithm 1, now 1 + 4ω + O(ε) 5 + O(ε) general case
Algorithm 2, now 2 + 6ω 8 + O(ε) strictly only, no violation

solve an LP on T to obtain the optimal assignment matrix ϱ
→
T . T and ϱ

→
T can be viewed as

a relaxed solution for (ω, ε)-fair k-means, i.e., the number of centers may be more than k,
and meanwhile, the cost is bounded and the fairness constraints are also preserved. And we
adjust the location of T . For each "potential" center t ↑ T , we update the location of t to be
the corresponding cluster centroid. The adjusted T is denoted by ς(T ).

Merge: We run a ϑ-approximate k-means algorithm on ς(T ) to obtain centers set S.
Then, we solve an LP on S to obtain the optimal assignment matrix ϱ

→
S and rounding the

solution to an integral solution by our proposed rounding technique.
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Abstract

We study the geodesic k-center variant where we are given a simple polygon P with a set of sites

S on the boundary of P , and the objective is to cover S with k geodesic disks of minimum radius.

Using amortized analysis, we provide an algorithm with a running time of O(nm log(nm) + m
4
)

where n is the number of vertices and m is the cardinality of S. We mainly discuss the continuous

version of this problem (the centers of the k disks can be anywhere in P ), but the results can be

applied to the discrete version with minor changes.

2012 ACM Subject Classification Theory of computation → Computational geometry
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1 Introduction

The k-center problem is a classic optimization problem with applications in many areas,
including facility allocation and urban planning. It has been studied extensively in di!erent
settings (see [4][5][2][1]). In this work, we consider the following variant: Given a simple
polygon P of n vertices with m sites {u1, u2, . . . um+1 = u1} = S → ωP , find k centers so
that the maximum geodesic distance of any site in S to its nearest center is minimized. This
objective is equivalent to finding k geodesic disks in P of (the same) minimum radius so that
they cover S. The problem is a generalization of [3] in which the authors considered convex
polygons, and can be seen as placing centers of interest in a domain (museum, park) so that
the maximum distance from each entrance ui to the nearest center is minimized.

We assume that the sites are ordered clockwise along the boundary. We use S(i, j) to
denote the set of sites from ui to uj , inclusive. Additionally, we let ε(x, y) denote the geodesic
shortest path between two points x and y with respect to P . When x = ui and y = uj are
sites in S, we let ε(i, j) be the geodesic shortest path from ui to uj . W.l.o.g., we assume
that i < j and the path ε(i, j) is directed from ui to uj , so a site uk is said to be “on the
right” of ε(i, j) if j < k < (i + n).

2 Dynamic programming algorithm

We start with a simple “no-crossing” lemma, the foundation of our DP algorithm. This lemma
claims that we can always find an optimal k-center solution with the following property:

↭ Lemma 1. If a1, a2 are any two sites assigned to the center ca, and b1, b2 are assigned
to cb, ca ↑= cb, then no traversal along the boundary ωP encounters the sites in the order
a1, b1, a2, b2.
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2 Geodesic k-center in a simple polygon with sites on the boundary

ui

uj

l + 1

l

ui

uj

y

x
x+ 1

y � 1

bG(b)

Figure 1 The two cases of the recursion in our algorithm. Left: both sites ui and uj belong to

the same disk b (purple). The red directed edges show the edges of the graph G(b). Right: ui and

uj belong to di!erent disks.

Our overall algorithm involves two steps: (1) perform a binary search on the radius r

and (2) for each fixed radius we execute a DP algorithm to verify if it is possible to cover all
of S using k disks. In our DP, we define W (i, j), i ↓ j, as the minimum number of disks of
radius r needed to cover all sites in S with indices between i and j, including i and j. In
step (2), we begin with computing the set of geodesic disks of radius r centered at the sites
in S and build an arrangement A of disks in P . Consider any 2-face f with non-zero area in
this arrangement whose boundary is comprised of convex or concave arcs of disks in A. Let
ϑ, which we call a cell, be the union of the interior of a 2-face f and its convex arcs, then it
follows that any disk of radius r whose center is in ϑ will always contain the same subset
of sites in S. Therefore, for each cell ϑ we can pick an arbitrary disk to represent it. Since
there is one disk per cell and A has at most O(m2) faces, there are at most O(m2) disks for
the algorithm to work with.

We can calculate W (i, j) using recursion which has two separate cases (see Figure 1):

(i) ui and uj belong to the same disk. In the trivial case where all sites from ui to uj can be
covered by one disk, we assign W (i, j) = 1. Let B(i, j) be the set of disks that contain
both ui and uj but no site from uj+1 to ui→1, i.e. each disk in B(i, j) does not contain any
site in S to the right of ε(i, j). For each b ↔ B(i, j), let G(b) be the directed graph whose
vertex set is V (b) = S ↗ b and edge set is E(b) = {e(x, y) | i ↓ x < y ↓ j}\{e(i, j)}. Each
edge e(x, y) has weight W (x + 1, y ↘ 1) if x + 3 ↓ y otherwise its weight is 1. Essentially,
the weight of edge e(x, y) is the minimum number of disks needed to cover all sites to the
left of ε(x, y), excluding ux, uy. Let ϖ(b) be the total weight of the shortest path from ui

to uj within G(b), we will compute the following value for the first case of the recursion:

W1(i, j) = min
b↑B(i,j)

ϖ(b) + 1

which is the best weight over all shortest paths of all disks in B(i, j). If ui and uj

cannot be contained within one disk of radius r then we can simply skip this step and let
W1(i, j) = ≃.

(ii) ui and uj belong to two di!erent disks. In this case, we will compute:

W2(i, j) = min
l:i↓l<j

(
W (i, l) + W (l + 1, j)

)

Finally, we let W (i, j) = min(W1(i, j), W2(i, j)). To answer the decision question for each
fixed r, we only need to check if W (1, m) ↓ k. The entire process will fill the DP table
from the bottom up, i.e., subproblems with a smaller di!erence between its indices will be
computed before “larger” subproblem.
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↭ Lemma 2. The above DP algorithm can correctly verify whether it is possible to cover S

using at most k disks of radius r.

A naive analysis of the above algorithm will give us an O(nm log(nm) + m
6) running

time. The preprocessing requires O(nm log(nm) + m
2) [1] to compute the arrangement A of

geodesic disks. For the DP, computing W1(i, j) takes time O(m4): there are O(m2) di!erent
disks to consider, and for each disk building the graph with O(m) vertices and compute the
shortest path takes time O(m2). Therefor, the DP has a running time of O(m6) for all pairs
of (i, j)i<j . However, we can use amortized analysis to reduce the overall running time to
O(nm log(nm) + m

4). The intuition is that each disk of a cell in the arrangement is visited
only once in the entire DP, reducing the running time by a factor of m

2.

↭ Theorem 3. The continuous geodesic k-center problems in a simple polygon where sites
are on its boundary can be solved in time O(nm log nm + m

4).

The above algorithm can be reused for the discrete version where the centers can only be
chosen from a given discrete set of points. Let M be the number of candidate center points in
the discrete version, then the total running time will now be O(nm log(nm)+min(M, m

2)m2):
this is because we only need to consider cells (ϑ) that have at least one candidate center in it.
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Abstract
We describe robust algorithms for (unit) disk graphs and transmission graphs: the input is not given
geometrically, but rather as an abstract graph, and it may or may not be realizable as a (unit) disk
graph or a transmission graph. If the graph is realizable, the algorithm must give the correct answer.
If not, the algorithm will either give a correct answer or correctly state that the input is not of the
required kind. We consider the problem of finding a triangle and of computing the girth.
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1 Introduction

Given a set S → R2 of n sites in the plane, where each site s ↑ S has an associated radius
rs > 0, the disk graph D(S) = (S, E) has an edge {u, v} ↑ E i! the disks defined by u and v

intersect. If all associated radii are 1, D(S) is called a unit disk graph. The transmission
graph on S is the directed graph with vertex set S and a directed edge st from site s to t i! t

lies inside the disk of radius rs around s. There is plenty of literature on (unit) disk graphs,
e.g., [2, 4, 6, 8, 11], whereas transmission graphs are not as widely studied [11,12]. Although
disk graphs and transmission graphs may have up to !(n2) edges, they can be described
with only O(n) numbers: the coordinates of the sites and the associated radii. Most results
assume that a geometric realization of the (unit) disk graph or the transmission graph is
given. Consider a di!erent scenario: we are given an abstract graph G (e.g., as an adjacency
list) which may be a (unit) disk graph or a transmission graph. We would like to process G

so that if G actually is a special graph, we can still take advantage of the additional structure
given by the geometry (and if not, we would like to detect this). One major hurdle (unlike,
e.g., in the setting of planar graphs) is that the problem of deciding whether an abstract
graph is a (unit) disk graph or a transmission graph is ↓R-hard [10,13].

To address this problem, Raghavan and Spinrad [16] introduced robust algorithms in
restricted domains. A restricted domain is a subset of the possible inputs. Contrary to the
promise setting, where the algorithm only gives guarantees for inputs from the restricted
domain, the output in the robust setting must always be useful. If the input comes from
the restricted domain, the algorithm must return a correct result. If not, the algorithm may
either return a correct result, or correctly state that the input does not meet the requirement.

Raghavan and Spinrad [16] give a robust polynomial algorithm for finding maximum
cliques in unit disk graphs. Here, we revisit the notion of robust algorithms for geometric
intersection graphs. Unlike Raghavan and Spinrad [16], we focus on two problems that are
polynomial on general graphs, but that can be solved much faster on (unit) disk graphs and
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2 Robust Algorithms for Unit Disk and Transmission Graphs

u0
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Figure 1 If the mutual distance between the ui is maximized, 6 disks induce at least one triangle.

transmission graphs: finding a triangle and computing the girth (the shortest unweighted
cycle). The best known algorithm for general graphs uses matrix multiplication and runs
in either O(nω) or O(n2ω/(ω+1)) time, where ω ↔ 2.371552 [1, 7, 9, 17]. For special graph
classes, better results are known, e.g. an O(n)-time algorithm for planar graphs [5, 9, 15] or
an O(n log n)-time algorithm for general disk graphs [11].

2 Results

Throughout, the input is an abstract graph G = (V, E), given as an adjacency list.

↭ Theorem 2.1. There is a robust algorithm to find a triangle in a graph from the domain
of unit disk graphs that runs in O(n) time.

The algorithm works as follows: If there is no vertex v with deg(v) > 5, we check explicitly
for every vertex if it has two adjacent neighbors. This directly solves the problem. Otherwise,
let v be a vertex with deg(v) > 5. Let N

→(v) be a set with six neighbors of v. For every
neighbor pair u, w ↑ N

→(v), explicitly check if u and w are adjacent. If so, report the triangle
u, v, w. Otherwise, report that the input is not a unit disk graph (see Figure 1).

The problem becomes harder in general disk graphs. In particular, every star is a general
disk graph (see Figure 2), and hence we cannot work with a bounded degree anymore.
However, a result by KKMRSS [11] shows that any non-planar (unit) disk graph contains a
triangle at the crossing edges of an embedding (see Figure 3). The proof uses the observation
that two intersecting disks form a lens that is intersected by at least one disk of a crossing
edge. By contrapositive, if a (unit) disk graph does not contain a triangle, it must be planar.

Hence, we first perform a linear-time planarity test (e.g., [3]) on G. If G is planar, we can
find a triangle with the algorithm by Chang and Lu [5], in linear time. If G is not planar, we
get a Kuratowski subdivision GK as a certificate. By the result of KKMRSS there has to
be a triangle in the induced subgraph GiK . In order to test for triangles we iterate over all
edges {u, v} ↑ EK and traverse their sorted adjacency lists in an interleaved fashion. (The
sorting is achieved in O(m + n) time by transposing.) If the same vertex w is found in both
lists, stop and report the triangle u, v, w, see Figure 4. Otherwise, if no such triangle was
found after testing all edges in EK , report that G is not a disk graph. Leading to:
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Figure 2 Every star can be realized as a general disk graph.

Figure 3 At least three of the disks of crossing edges have a common point.

w

u

v

w

Figure 4 The vertices u, v form an edge in EK and have a common neighbor. Thus, the triangle
u, v, w is found. The green edges are edges in GiK .
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4 Robust Algorithms for Unit Disk and Transmission Graphs

↭ Theorem 2.2. There is a robust algorithm to find a triangle in a graph in the domain of
general disk graphs that runs in O(n + m) time.

By a similar strategy to KKMRSS [11], we extend the approach to compute the girth.

↭ Corollary 2.3. There is a robust algorithm to compute the girth of a graph in the domain
of unit disk graphs (general disk graphs) that runs in O(n) (O(n + m)) time.

In the first step, we run the robust algorithm of the desired domain to find a triangle.
Depending on the outcome we either report the result (non-domain, girth equals 3) or
proceed. In case of neither existence of a triangle nor domain violations we test for planarity.
If the graph is not planar, the non-existence of a triangle contradicts domain membership.
Otherwise, we compute the girth with the algorithm by Chang and Lu [5].

For the directed variant, the transmission graphs, a result by Klost [14] allows us to
bound the bidirectional degree by 7 to ensure the existence of a triangle. Given this, we can
proceed in a similar manner as before.

↭ Theorem 2.4. There is a robust algorithm that finds a directed triangle in a transmission
graph in O(n + m) time.
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Abstract

In the minimum ply geometric set cover problem (continuous setting), the goal is to cover a given
set of points with copies of a given geometric object, while minimizing the ply of the cover. For
di!erent objects like unit squares, unit disks, etc. we present a simple and fast algorithm for the
minimum ply cover. We show that the problem of minimizing the number of objects in a 1-ply cover
for unit squares is NP-hard.

For fixed-sized hyperboxes in d-dimensional space, our algorithm computes an optimal 1-ply
cover, which is up to 2d→1 times the size of a minimal 1-ply cover in O(dn log n) time. We show that
for unit disks, a ply of 2 is su"cient to cover any point set. We also provide an algorithm producing
a 2-ply cover of size at most 7 times the minimal cover in O(n log n) time. For arbitrary convex
polygons with m vertices, we present an algorithm producing a 4-ply cover in O(n log n + nm) time.
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1 Introduction

We study the Minimum Ply Geometric Set Cover, i.e., MPGSC problem in the continuous
setting [2]. In this problem, the input consists of a set P of n points in R2, and a geometric
object t, the goal is to find a set S of translated copies of t that covers all the points in P
while minimizing ply(S), where ply(S) = maxp→R2 |{s → S : p → s}|. A related problem is the
Minimum-Membership Geometric Set Cover (MMGSC), where we minimize the membership,
defined as, memb(P, S) = maxp→P |{s → S : p → s}|.

The MPGSC problem in the discrete setting was introduced by Biedl et al [2], who
presented NP-hardness and approximation results. In the discrete setting, Durocher et al.
presented the first constant approximation for MPGSC with unit squares [3]. Whereas,
MMGSC was introduced by Erlebach et al [4]. Bandyapadhyay et al. introduced the
Generalized Minimum-Membership Geometric Set Cover problem, which generalizes MPGSC
and MMGSC. They gave a polynomial-time constant approximation for unit squares [1].

Research on geometric set cover often focuses on the discrete setting, where both the
points to be covered and the covering objects are confined to predefined positions. Several
variants of this problem are used to model interference minimization in cellular networks,
among other applications. However, many real-world scenarios require continuous flexibility
in the placement of covering objects, leading to our study of the continuous variant of the
problem. Below, we define a minimum size variant of the continuous 1-ply cover.

↭ Definition 1 (Minimum Size 1-Ply Geometric Set Cover of Unit Squares). Given a set of
n points P on R2, the goal in MS1P-GSC-US is to cover P with the minimum number of
non-overlapping unit squares.
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2 Minimum Ply Covering

2 Main Results

We first present e!cient algorithms for constructing constant-ply covers for various geometric
objects, and provide approximation results on their size. Then we establish the NP-hardness
of MS1P-GSC-US (refer to Definition 1).

2.1 Algorithms

For a given set P of n points, we summarize our algorithmic results for MPGSC below.

Object Ply (Su!cient) Approx. Ratio Running Time

Unit Interval 1 1 O(n log n)
Unit Square 1 2 O(n log n)

d-dimensional Hyperbox 1 2d→1
O(dn log n)

Unit Disk 2 7 O(n log n)
Convex Polygon (m vertices) 4 ↑ O(n log n + nm)

In the third column, we approximate the size of the solution. We also show that a 1-ply
cover can be constructed if the geometric object t tiles the plane. Moreover, for objects that
do not tile the plane, we show a set of points for which a 1-ply cover does not exist.

In this work, we prove the bounds on ply, which implies the same bounds for membership.
For example, we construct a 1-ply hypercube cover. Since a 1-ply cover is a set of non-
overlapping objects, the membership of any point is at most 1. Hence, this cover is also a
1-membership cover.

2.2 Hardness

↭ Theorem 2. MS1P-GSC-US is NP-hard.

Proof. (Sketch) We reduce from PLANAR3SAT, which is known to be NP-hard [7]. Given
a PLANAR3SAT formula ω with n variables and m clauses, we construct a corresponding
instance Pω of MS1P-GSC-US. The variable-clause incidence graph of ω can be embedded
as a planar graph with variables along a horizontal axis [6]. The clauses are represented as
non-crossing three-legged “combs” above or below the axis [5]. We refer to Figure 1.

x1 x2 x3 x4 x5 x6

Figure 1 A rectilinear planar embedding of a PLANAR3SAT instance.

We construct Pω, which is a set of points for which a 1-ply cover of at most k (defined
later) unit squares exists if and only if ω is satisfiable. Each variable xi is represented by a
chain of unit squares, colored red and blue alternately. This forms two possible configurations:
1. True assignment: Select red squares (one configuration).
2. False assignment: Select blue squares (alternative configuration).
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Figure 2 The variable and clause gadgets for a clause ω = (¬xi ↓ ¬xj ↓ xk). Each variable
gadget is a set of points determined by a chain of red and blue squares (shown as shaded). The
clause gadget is composed of a clause point (shown as a cross) and some other points determined by
three chains of (unshaded) squares. The interaction between a variable gadget and a clause gadget
depends on whether the variable appears in its positive or negative form in the clause.

We refer to Figure 2. These two choices ensure that each variable is assigned exactly
one truth value. On the other hand, each clause Cj is represented by a clause point and
other points determined by a three-legged structure composed of unit squares. If at least one
literal is satisfied, a covering square for the clause point can be placed e!ciently. If no literal
is satisfied, additional squares are needed, increasing the size of the solution.

We set k to be m + c, where c is half the number of squares placed for the variable and
clause gadgets taken together. If ω is satisfiable, we can select a corresponding set of k
non-overlapping unit squares covering all points in Pω. If there exists a 1-ply unit square
cover of size at most k, it corresponds to a satisfying assignment of ω. Since PLANAR3SAT
is NP-hard, it follows that MS1P-GSC-US is also NP-hard. ↫
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Abstract

Strong k-metrics were introduced recently (SoCG 2024) as a generalization of traditional metrics,
defining a metric-like function on k-tuples of points. We continue the study of strong k-metrics,
examining generalized metric embeddings and possible applications. In particular we present results
analogous to the embeddability of metrics into spaces with ω2 norms.
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1 Introduction and Background

A metric space consists of a set of points X and a metric function d assigning a non-negative
value to all pairs of points. They generalize the notion of distance and have been applied in
various sub-fields of computer science with much success. For instance, metric embeddings
which relate di!erent metrics to each other are used in the design of approximation algorithms
for problems involving flows and cuts [1]. We study a higher-order generalization of metric
spaces known as strong k-metric spaces. A strong k-metric is a set X and a function d which
assigns non-negative values to all k-tuples of points in addition to satisfying certain axioms.
Strong k-metric spaces are not the only generalization of metric spaces, but they enforce a
stronger condition on the k-metric function d which proves more useful in generalizing results
in metric embeddings [2, 4, 5]. A natural example of strong k-metrics is (k → 1)-dimensional
volume – the volume of the convex hull of k vectors in Rk→1.

Below we describe ongoing research into strong k-metrics, referred to hereafter as k-
metrics, including results in strong k-metric embeddings. It is hoped that these results and
ongoing research will result in the development of approximation algorithms for problems
like the topological sparsest cut problem [8] or the combinatorial simplicial min-cut which,
unlike its graph variant, is NP-hard [7].

We refer the reader to [6] for an overview of metric spaces and metric embeddings and
[2] for an overview of k-metric spaces. For the sake of brevity, we highlight only the most
important background information for understanding the following results.

A k-metric embedding is a map from one k-metric space to another. Ideally such a
map preserves the metric value, so that if some k-tuple has metric value x, then the image
of that k-tuple also has metric value x. It is common, though, for embeddings to allow
some distortion of the metric values and in such cases we naturally focus on bounding the
distortion. In particular, we study embeddings into k-metric spaces with ωp norms, denoted
Cm

k,p, where m is the dimension of the embedding and p denotes the ωp norm used. A metric
is in Cm

k,p if and only if there exists a matrix F such that d = ↑εk→2F↑p, where d is viewed as
a vector and εk→2 represents the simplicial coboundary operator [2].
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2 Metric Embeddings into C3,2 with Possible Applications

It is known for 2-metrics that given an (n + 1)-point metric space, there is a polynomial-time
algorithm which determines to any desired precision the smallest distortion for which the
metric embeds in ω2 [6]. Further, a 2-metric d isometrically embeds in ω2 if and only if there
exists vectors gi, gj ↓ Rm such that for some fixed point x0 ↓ X and all xi, xj ↓ X we have:

gi · gj = d(x0, xi)2 + d(x0, xj)2 → d(xi, xj)2

2 .

We present analogous results for 3-metrics in Lemmas 1 and 2.

↭ Lemma 1. Given a 3-metric space (X = {x0, . . . , xn}, d : X
3 ↔ R↑0), d ↓ Cm

3,2 if and
only if there exists yi,j ↓ Rm, with yi,j = →yj,i, such that

yi,jyj,k+yi,jyk,i+yj,kyk,i = d(xi, xj , xk)2 → (d(x0, xi, xj)2 + d(x0, xi, xk)2 + d(x0, xj , xk)2)
2 .

↭ Lemma 2. There exists a polynomial time (1 + ϑ)-approximation algorithm for computing
minimum distortion embedding of a 3-metric into C3,2.

The proof for both of these lemmas is similar to the classic proofs for the corresponding
results. For Lemma 1, we show that given a metric in Cm

3,2 one can construct yi,j from the
matrix F which defines the metric. Conversely, given a collection of yi,j satisfying the above
hypothesis, one can construct F as the matrix whose rows are given by yi,j which satisfies
d = ↑ε1F↑. For Lemma 2, we express the problem as a relaxation of the isometric embedding
seen in Lemma 1. In particular, we construct an SDP with constraints given by the metric
values, variables representing the embedding, and with an objective function that minimizes
the distortion. The success in generalizing these initial results for ω2 embeddings, particularly
the immediate similarity to the standard proofs, motivates further study in this area. It is
the hope that a generalization of Bourgain’s theorem [3] to k-metrics, for instance, will lead
to an initial approximation algorithm for the topological sparsest cut problem. In fact, the
seminal O(

↗
lg n)-approximation algorithm from [1] makes use of a unit ω

2
2-representation of

a graph which appears to be generalizable to k-metrics given the results above.

3 Determining Embeddability of 3-metrics in 1 dimension

Among the most basic results in metric embedding, is a linear time algorithm to determine
if a metric space (X, d) isometrically embeds into the line metric, i.e. ω

1
2. Note that for any

two points on the line their ωp and ωq distances are identical. Somewhat surprisingly, such
a result is not easily obtained for k-metrics in general. We show certain conditions on the
space (X, d) for which a polynomial time algorithm for determining whether d ↓ C1

3,2 is
known. The simplest case is the all 1’s metric. That is, (X, d) such that d(xi, xj , xk) = 1
for all xi, xj , xk ↓ X. Interestingly, for 2-metrics this is not isometrically embeddable in ω

1
2

when n ↘ 3, in fact, by a simple packing argument it takes !(log n) dimensions to realize
this metric. But in the case of 3-metrics, or any k odd, this is trivially in C1

k,2 by taking
F = 1 ↓ Rn.

At the opposite extreme, when all values of a metric are distinct, there is a polynomial
time algorithm to determine if the metric is in C1

3,2.

↭ Lemma 3. Given a 3-metric d which takes distinct values on all 3-tuples, there is a
polynomial time algorithm to determine if d ↓ C1

3,2.
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We can relax the hypothesis to: given a point xi, for all xj ≃= xi, we require that
d(xi, xj , xk) is distinct from all d(xi, xj , xk→). This relaxation allows one to determine C1

3,2
embeddability for a larger class of k-metrics and demonstrates that the core of the previous
argument is based on arguing that all 3-tuples adjacent to xi need only have distinct values
from 3-tuples they have 2 common points with. Further research aims to determine a global
poly-time algorithm to determine 3-metric embeddability in C1

3,2, or prove one does not exist.
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Abstract

Let S be a point set in the plane, P(S) and C(S) sets of all plane spanning paths and caterpillars
on S. We study reconfiguration operations on P(S) and C(S). In particular, we prove that all of
the commonly studied reconfigurations on plane spanning trees still yield connected reconfiguration
graphs for caterpillars when S is in convex position. If S is in general position, we show that the
rotation, compatible flip and flip graphs of C(S) are connected while the slide graph is disconnected.
For paths, we prove the existence of a connected component of size at least 2n→2 in the flip graph
on P(S), and that no component of size at most 7 can exist in this graph.
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1 Introduction

Given a set of structures C, and a reconfiguration operation that transforms one object in C
to another, the reconfiguration graph is a graph with vertex set C in which two vertices form
an edge if one can be transformed into the other using a single reconfiguration operation.
Often, in computer science, objects are solutions to a problem and reconfigurations are local
changes that transform one solution into another. Then, to understand the solution space, it
is important to study the reconfiguration graph. For an introduction to the topic, see [14].
Given a point set S in the plane, a plane spanning tree on S is a spanning tree of S whose
edges are straight line segments that do not cross. Let T (S) be the set of all plane spanning
trees on S. We consider five reconfigurations on T (S) (see Figure 1). For the following, we
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a) b) c)

d) e) f)

Figure 1 a) A plane spanning tree. Replacing the dashed line with the dotted line corresponds
to: b) a flip, c) a compatible flip, d) a rotation, e) an empty triangle rotation and f) a slide.

are given T1 = (S, E1), T2 = (S, E2) → T (S), and we say that:

1. T1 and T2 are connected by a flip if E2 = E1 \ {e} ↑ {f} for some edges e, f .
2. T1 and T2 are connected by a compatible flip if E2 = E1 \ {e} ↑ {f} for some edges e, f

which do not cross.
3. T1 and T2 are connected by a rotation if E2 = E1 \ {e} ↑ {f} for some edges e, f which

share an endpoint.
4. T1 and T2 are connected by an empty triangle rotation if E2 = E1 \ {e} ↑ {f} for some

edges e, f which share an endpoint and the triangle spanned by their endpoints is empty.
5. T1 and T2 are connected by a slide if E2 = E1 \ {e} ↑ {f} for some edges e, f which are

as in 4. and if e = ab and f = ac then bc → E1 ↓ E2.

Note that every slide is an empty triangle rotation, every empty triangle rotation is a
rotation, and so on. This hierarchy will be useful when studying the structural properties of
the corresponding reconfiguration graphs.

2 Background

Reconfigurations of plane spanning trees have been well studied, both for points in convex
position [6, 7, 11] and in general position [1, 2, 13]. The questions that have been studied
are that of connectivity of the reconfiguration graphs [1, 5, 13] and diameter [2, 7, 8]. The
reconfigurations of paths have proven to be another interesting topic of study [3, 4, 9, 10,
12, 15]. While the case when points are in convex position has been well studied and many
properties of the flip graph are known, for general position it is still not known if the flip
graph is even connected, except in some restricted cases [3, 4].

3 Our contribution

We further the study of induced subgraphs of reconfiguration graphs of plane spanning trees
by exploring reconfigurations of plane spanning caterpillars, and by expanding on the topic of
reconfigurations of plane spanning paths. A caterpillar is a tree in which all non-leaf vertices
form a path. We call this path the spine of the caterpillar. A plane spanning caterpillar of a
point set S is a plane spanning tree of S which is a caterpillar. For a set S, we will denote
by C(S) the set of all plane spanning caterpillars on S. We will denote the reconfiguration
graphs on C(S) by Gflip

C (S), Gcomp-flip
C (S), Grot

C (S), Gemp-rot
C (S), Gslide

C (S). First, we focus on
the case where S is in convex position. We show that the slide graph Gslide

C is connected,
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which implies that all of the reconfiguration graphs are connected in this case. For compatible
flips, we prove a stronger bound for the diameter.

↭ Theorem 1. Let S be a set of n ↔ 3 points in convex position in the plane. Then, the
graph Gslide

C (S) is connected with diameter at most 3n ↗ 8.

↭ Theorem 2. Let S be a set of n ↔ 3 points in convex position in the plane. Then, the
graph Gcomp-flip

C (S) is connected with diameter at most 2n ↗ 5.

Next, we consider the case when S is a point set in general position. For a caterpillar
C → C(S), and consecutive spine vertices vi, . . . , vj of C, we write Si,j for the point set
consisting of the spine vertices and all of the leaves attached to them. We call C → C(S) with
spine v1, v2, . . . , vk a well-separated caterpillar if for each i ↔ 1, the convex hull of S1,i is
disjoint from the rest of S. We show that all caterpillars in this class are mutually connected
in Gslide

C (S). This large connected component is significant, as we later show that Gslide
C (S)

is disconnected. On the other hand, we show that the rotation graph Grot
C (S) is connected.

We leave open the question of the connectivity of Gemp-rot
C .

↭ Theorem 3. Any two well-separated caterpillars are connected in Gslide
C (S).

↭ Theorem 4. The graph Gslide
C (S) is connected for every set S of n points in the plane if

n ↘ 7. If n ↔ 8, there exists a set S of n points such that Gslide
C (S) has isolated vertices.

↭ Proposition 5. The graph Grot
C (S) is connected.

Lastly, we focus on connected components of the reconfiguration graph of plane spanning
paths. Given a set of points in general position S, we will call the corresponding flip graph
of plane spanning paths GP(S). Currently, the main open problem is deciding whether
GP(S) is connected. Here we find a large connected component consisting of what we call
generalized peeling paths. We introduce this subclass in Section ??. We note that Theorem 6
was independently discovered by Kleist, Kramer and Rieck [12]. We still include it since
we use the number of these paths to prove that there are at least 1

4 (3n ↗ 1) well-separated
caterpillars on S. Finally, we investigate the minimal size of components in GP(S).

↭ Theorem 6. Let S be a set of n points in general position. Then GP(S) contains a
connected component of size !(2n→2).

↭ Theorem 7. Let S be a point set of n ↔ 5 points in general position. Then, GP(S) contains
no connected component of size at most 7.
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Abstract
In a seminal work from 1989, Kratochvíl and Matou!ek initiated the study of intersection graphs

of segments forming the class SEG [11]. A graph is in SEG if its vertices can be represented by
straight line segments in the plane that intersect if and only if the corresponding vertices are adjacent.
The authors not only showed that testing membership in SEG is NP-hard, but also by showing that
a representation of a graph in SEG might require coordinates with exponential precision [11], laid
the foundation for the study of a new complexity class denoted as →R [15]. They studied further
variants of SEG (see Fig. 1 of [11]), in one direction further allowing the segments to have a bounded
number of bends [13,14], and in the other direction restricting the segments to a bounded number of
slopes [10]. In the latter setting, even the case where only two directions, say horizontal and vertical,
are allowed (in their work denoted as 2-DIR, and otherwise also called Grid Intersection Graph

or GIG [7]) turned out NP-complete [10].
Kratochvíl and Neŝetril observed that further prescribing the orders of horizontal and vertical

segments, separately along both axes, finally turned the problem tractable [10, 12]. They also posed
the following open problem: what if only one of the two orders (e.g. the vertical order of horizontal
segments) is fixed? In this work, we will give an e"cient algorithm finally resolving this question
after roughly 30 years, which can formally be stated as follows; see also Figures 1a and 1b.

Problem Semi-Fixed HV-Segment Intersection Graph Recognition (SF-HV-SEG)
Input A bipartite graph G = (H ↑ V, E) and a linear order ωH of H.
Question Is G the intersection graph of horizontal segments H and vertical segments V , where the

horizontal segments have the fixed vertical order ωH?
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Figure 1 (a) A SF-HV-SEG instance, highlighting the fixed order ωH . (b) A corresponding
HV-segment representation, showing that it is a yes-instance. (c) An equivalent instance of proper

T -Level Planarity. The consecutive sets of every level are highlighted in orange.
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1 Reducing SF-HV-SEG to proper T -Level Planarity

To solve instances of SF-HV-SEG, we will use a reduction to a constrained planar graph
drawing problem. For the Level Planarity problem, we are given a graph together with
prescribed y-coordinates for its vertices (also called levels), and seek a crossing-free drawing
that respects these y-coordinates and has all edges drawn y-monotone. This problem has
been thoroughly researched in the field of Graph Drawing, e.g. in terms of e!cient and
also simple solutions [3, 4, 6, 8, 9] and also its relationship to other planar graph drawing
problems [2, 16]. We call the tuple (G, ω) consisting of a graph G = (V, E) and a leveling
function ω : V → N a level graph. A level graph (and especially its leveling function) is called
proper if all edges have their endpoints on adjacent levels, i.e., if we have ω(v) = ω(u) + 1 for
all uv ↑ E.

We will use a further constrained variant that also allows us to require sets of vertices
on the same layer to be consecutive, i.e., ordered such that no other vertices of that level
lie between them. We will require these consecutivity constraint sets to form a laminar
family, i.e., any two sets are either disjoint or one contains the other.1 This problem is then
known to have a quadratic-time solution if the instance is proper, while it is NP-complete on
non-proper instances [1, 2]. Formally, the former, tractable case of the problem is defined as
follows.

Problem proper T -Level Planarity

Input A graph G = (V, E), a proper leveling function ω : V → N, and for each level i a
laminar family Ti of consecutivity constraints on ω

→1(i).2
Question Is there a planar drawing of G where each vertex v ↑ V has y-coordinate ω(v), all

edges are drawn y-monotone, and the horizontal order of vertices on each level i satisfies
the consecutivity constraints of Ti?

To now reduce SF-HV-SEG to this problem, we create a level for each horizontal segment
along the given order; see Figure 1. For each vertical segment, we create an edge that spans
from the first to the last level of horizontal segments that shall be intersected. We subdivide
the edges to make the instance proper. The crucial insight to SF-HV-SEG is now that all

1 The reduction even only generates one consecutivity constraint per level, i.e., families containing only a
single set. Still, our reduction in the converse direction [5] also covers this more general case

2 Using the containment-relationship of laminar families allows us to equivalently represent Ti as a tree of
linear size, thus obtaining the original formulation of the problem [2].
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vertical segments I(i) that intersect a given horizontal segment hi need to be consecutive on
the horizontal line corresponding to hi. This means that any other vertical segment that
spans, but does not intersect hi, needs to cross level i before or after I(i), but not within.
This can easily be modeled using the per-level consecutivity constraints of proper T -Level

Planarity, yielding the following theorem (see the full version [5] for a formal proof).

↭ Theorem 1. There exists a quadratic-time reduction from SF-HV-SEG to proper

T -Level Planarity where the input graph is the disjoint union of level-monotone paths.

Since proper T -Level Planarity admits a quadratic-time algorithm [1,2] and our
reduction increases the size to be at most quadratic, we can thereby solve the initial instance
in quartic time overall.

↭ Corollary 2. SF-HV-SEG can be solved in O(n4) time.

2 Conclusion

When posing the SF-HV-SEG question, Kratochvíl and Neŝetril already suggested two
reformulations of the problem in terms of forbidden “volkswagen” patterns in 2-layer drawings
or forbidden “cross” patterns in the permuted adjacency matrix [10,12]. Still, the problem
remained open for 30 years until yet another di"erent approach allowed us to show tractability
via a reduction to a constrained planar graph drawing problem. In the full version [5],
we show that the reduction also works in the other direction, allowing us to view both
problems as di"erent perspectives on the same underlying question. Interestingly, the
proper T -Level Planarity problem is itself a reformulation of another problem called
k-ary Tanglegrams [2, 17], which arose in computational biology to visualize evolutionary
histories of species. In addition to this very visual solution, in the full version [5], we also give
another equivalent characterization as a constrained ordering problem that allows a direct
solution without the need for reductions. Through the links we established, we now know
that we can view the same tractable problem through 6 di"erent-yet-equivalent formulations,
some of which arose naturally and independently, and taking di"erent perspectives from
either a graph drawing or entirely combinatorial standpoint. It will be interesting to see
whether further problems turn out to join this order of equivalent formulations in the future.

References
1 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, and Vincenzo

Roselli. The importance of being proper – (in clustered-level planarity and t-level planarity).
In Christian A. Duncan and Antonios Symvonis, editors, Proceedings of the 22nd International
Symposium on Graph Drawing (GD’14), volume 8871 of Lecture Notes in Computer Science,
pages 246–258. Springer, 2014. doi:10.1007/978-3-662-45803-7_21.

2 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, and Vincenzo
Roselli. The importance of being proper: (in clustered-level planarity and t-level planarity).
Theor. Comput. Sci., 571:1–9, 2015. doi:10.1016/J.TCS.2014.12.019.

3 Guido Brückner, Ignaz Rutter, and Peter Stumpf. Level planarity: Transitivity vs. even
crossings. In Therese Biedl and Andreas Kerren, editors, Proceedings of the 26th International
Symposium on Graph Drawing and Network Visualization (GD ’18), volume 11282 of Lecture
Notes in Computer Science, pages 39–52. Springer, 2018. doi:10.1007/978-3-030-04414-5_3.

4 Guido Brückner, Ignaz Rutter, and Peter Stumpf. Level-planarity: Transitivity vs. even
crossings. Electronic Journal of Combinatorics, 29(4), 2022. doi:10.37236/10814.

36



XX:4 Segment Intersection Representations and Constrained Level Planarity

5 Simon D. Fink, Matthias Pfretzschner, and Peter Stumpf. Segment intersection representations,
level planarity and constrained ordering problems, 2025. arXiv:2502.16621.

6 Radoslav Fulek, Michael J. Pelsmajer, Marcus Schaefer, and Daniel $tefankovi%. Hanani-Tutte,
monotone drawings, and level-planarity. In János Pach, editor, Thirty Essays on Geometric
Graph Theory, pages 263–287. Springer, 2013. doi:10.1007/978-1-4614-0110-0_14.

7 I. Ben-Arroyo Hartman, Ilan Newman, and Ran Ziv. On grid intersection graphs. Discrete
Mathematics, 87(1):41–52, January 1991. doi:10.1016/0012-365X(91)90069-E.

8 Michael Jünger and Sebastian Leipert. Level planar embedding in linear time. Journal of
Graph Algorithms and Applications, 6(1):67–113, 2002. doi:10.7155/jgaa.00045.

9 Michael Jünger, Sebastian Leipert, and Petra Mutzel. Level planarity testing in linear time.
In Sue Whitesides, editor, Proceedings of the 6th International Symposium on Graph Drawing
(GD’98), volume 1547 of Lecture Notes in Computer Science, pages 224–237. Springer, 1998.
doi:10.1007/3-540-37623-2_17.

10 Jan Kratochvíl. A special planar satisfiability problem and a consequence of its np-completeness.
Discrete Applied Mathematics, 52(3):233–252, 1994. doi:10.1016/0166-218X(94)90143-0.

11 Jan Kratochvíl and Ji#í Matou!ek. Intersection graphs of segments. Journal of Combinatorial
Theory, Series B, 62(2):289–315, 1994. doi:10.1006/jctb.1994.1071.
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Abstract

We present two results related to an edge-isoperimetric question for Cayley graphs on the integer
lattice asked by Ben Barber and Joshua Erde. For any (undirected) graph G, the edge boundary of
a subset of vertices S is the number of edges between S and its complement in G. Barber and Erde
asked whether for any Cayley graph on Zd, there is always an ordering of Zd such that for each n,
the first n terms minimize the edge boundary among all subsets of size n. Our first result answers
this question in the negative by presenting an example of a Cayley graph on Zd (for all d → 2) for
which there is no such ordering. Our second result is a positive example of a Cayley graph on Z2

that has such an ordering. This is the most complicated example known to us of a two-dimensional
Cayley graph for which such an ordering exists.
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1 Introduction and Background

Given a graph G, the edge boundary of S → V (G) is ω(S) := |{uv ↑ E(G) : u ↑ S, v /↑ S}|.
The edge isoperimetric problem (EIP) of a graph G is, for a given n, to minimize ω(S) over

all S → V (G) where |S| = n. We call such minimizing sets solutions to the EIP of G. This

classical problem has been extensively studied since the 1960s (see [12]). Although it is

NP-hard in general, some special cases are known. One aspect that has received particular

attention is whether nested solutions exist. A nested solution for the EIP of G is an ordering

v1, v2, . . . of the vertex set V (G) such that for each n, the set {v1, v2, . . . , vn} is a solution to

the EIP of G.

One of the first cases of the EIP that has been solved is the d-dimensional cube graph,

which has nested solutions, and where the optimal shapes include subcubes [3, 10,13,14].

For p = 1, ↓, denote by (Zd, εp) the graph with vertex set Zd
where pairs of vertices have

an edge if their εp distance is 1. Bollobás and Leader [4] solved the EIP for (Zd, ε1). They

proved that the solutions include cubes and that (Zd, ε1) has nested solutions.

Bollobás and Leader [4] also considered the EIP on finite grids {1, 2, . . . , k}d
, considered

as induced subgraphs of (Zd, ε1). It turned out that there are two types of solutions: cubes

if n is small relative to the size of the grid and half-grids for large n. Furthermore, they

showed the transition between these two types of solutions is not smooth, giving the first

example of a graph without nested solutions.

If G is an undirected k-regular graph, for any S → V (G) we have |E(G[S])| =
k|S|→ω(S)

2 .

If G is a directed k-regular graph, then for any S → V (G) we have |E(G[S])| = k|S| ↔ ω(S).

Thus, the problem of minimizing ω(S) over all subsets with size n is the same as maximizing

|E(G[S])| over all subsets of size n.
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2 Edge Isoperimetry of Lattices

g1

g1 + g2g2

2g2 → g1

g2 → g1→2g1 + g2

→g1

→g1 → g2 →g2

g1 → 2g2

g1 → g2 2g1 → g2

Figure 1 Generating set of Theorem 3

In terms of this formulation, Brass [5] solved the EIP of (Z2, ε↑), where the optimal

shapes include certain octagons. Additionally, he showed (Z2, ε↑) has nested solutions. For

d ↗ 3, the EIP of (Zd, ε↑) remains open.

Let g1 = (1, 0) and g2 = (1/2,
↘

3/2). The triangular lattice is the set ! := {mg1 + ng2 :

m, n ↑ Z}. We can turn ! into a graph by joining a pair of vertices if their Euclidean distance

is 1. For this graph, the EIP is solved [9] (see also [8, 11]) with solutions that include regular

hexagons. Again, the graph has nested solutions. This graph is isomorphic to Z2
, where two

vertices are joined if their di!erence is in {(±1, 0), (0, ±1), ±(1, 1)}, hence it can be thought

of as a graph in between (Z2, ε1) and (Z2, ε↑).

The above examples are all special cases of Cayley graphs on the group Zd
[1].

↭ Definition 1. Let U be a finite set that generates Zd as a group and does not contain the
identity. The (directed) Cayley graph Zd

U is the graph on the vertex set Zd where (u, v) is
an edge whenever v ↔ u ↑ U . When U is symmetric (that is, ↔u ↑ U for all u ↑ U), we
consider Zd

U to be undirected.

Given a generating set U of Zd
, let Z → Rd

be the zonotope
∑

u↓U [0, u] generated by the

line segments [0, u], u ↑ U . Barber and Erde [1] showed that the edge boundary of tZ ≃ Zd

for large t, asymptotically approximates the edge boundary of solutions to the EIP of Zd
U .

Barber, Erde, Keevash and Roberts [2] showed that additionally, tZ ≃ Zd
asymptotically

approximates the shape of solutions to the EIP of Zd
U .

Barber and Erde [1] asked if every Cayley graph of Zd
has nested solutions. Despite

the positive examples already given, Briggs and Wells [6] gave counterexamples for the case

d = 1. On the other hand, they also gave a partial positive answer: for any Cayley graph of

Z, there exists an m ↑ N and an ordering v1, v2 . . . of Z such that for any n ↗ m, the set

{v1, v2, . . . , vn} is a solution to the EIP. In other words, they showed that any Cayley graph

on Z has nested solutions starting at a su"ciently large size.

2 Results

We give a negative answer to the question of Barber and Erde for all d ↗ 2 by giving an

explicit example of a Cayley graph without nested solutions. Furthermore, we show this

example does not have nested solutions regardless of any starting point. Thus, in dimensions

2 and higher there are stronger counterexamples than in Z1
.
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Figure 2 The extremal subgraph of !U with 24k2 ↓ 24k + 7 vertices (k = 2)

↭ Theorem 2. The EIP for Zd
U , where U is the generating set {±ei : i = 1, . . . , d} ⇐ {±2e1}

of Zd, does not have nested solutions starting at any size. In other words, for all n and each
n-element subset Sn of Zd for which ω(Sn) is the minimum among all n-element subsets of
Zd

U , there does not exist a sequence Sn ⇒ Sn+1 ⇒ Sn+2 ⇒ · · · of i-element subsets Si of Zd,
such that for each i ↗ n, ω(Si) is the minimum among all i-element subsets of Zd

U .

Our second result is a solution of the EIP for another Cayley graph on Z2
with nested solu-

tions. The generating set for this graph is U = {(±1, 0), (0, ±1), ±(1, 1), ±(1, ↔1), ±(↔1, 2),
± (↔2, 1)}. Thus, it contains (Z2, ε↑) as a subgraph. In fact, it is more suitable to consider

this to be the graph on the triangular lattice with edges for all pairs at distance 1 or
↘

3. As

a Cayley graph on !, the generating set is depicted in Figure 1. We denote it by !U .

↭ Theorem 3. Let !U be the undirected Cayley graph with vertex set ! and symmetric
generating set U = {±g1, ±(g1 + g2), ±g2, ±(2g2 ↔ g1), ±(g2 ↔ g1), ±(g2 ↔ 2g1)}, where
g1 = (1, 0) and g2 = (1/2,

↘
3/2). The maximum number of edges of a subgraph of !U with

n ↗ 3 vertices is

e(n) :=

{
6n ↔ 4

↘
6n ↔ 6 if n = 24k2 ↔ 24k + 7 for some k ↑ N

⇑6n ↔
↘

96n ↔ 63⇓ otherwise.

Additionally, !U has nested solutions.

In Figure 2 we depict the unique (up to translation) extremal subgraph of !U with 55

vertices. The subgraphs of !U with n vertices and e(n) edges are candidate extremal graphs

for a problem of Erd#s and Vesztergombi [7] on the maximum number of occurrences of

the smallest and second smallest distances in a set of n points in the plane. Let S be a

set of n points in the plane, and denote by m1(S) and m2(S) the number of occurrences

of the smallest and second smallest distance in S. Let f(n) be the maximum value of

m1(S) + m2(S), where the maximum is taken over all sets S of n points. It is known that

f(n) ⇔ 6n [15]. (See also [7] for further results.) Theorem 3 implies that f(n) ↗ e(n), with

the lower bound given by subsets of the triangular lattice, with smallest distance 1 and

second smallest distance
↘

3.

↭ Conjecture 4. For any su!ciently large n, f(n) = e(n), with the only sets S of n points
attaining f(n) = m1(S) + m2(S) being similar to the extremal sets on the triangular lattice.
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Abstract
Topological simplification is the process of reducing complexity of the structure of a topological space
while maintaining the essential features. It may especially be seen as reordering cells of a complex,
in a way, which eliminates some persistent homology groups, without a$ecting the rest. There are
multiple solutions for 2-dimensional complexes, however, for the general case the problem becomes
more complicated. We present a new approach based on the concept of depth posets.
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1 Introduction

Let us first introduce the main concepts.

↭ Definition 1. A Lefschetz complex is a triplet (X, dim, !), where X is a finite set of
elements called cells, dim : X → Z is a map assigning a dimension to each cell, and
! : X ↑ X → Z2 is the boundary coe!cient such that

∑
z→X !(y, z) · !(z, x) = 0 for all

x, y ↓ X and !(y, x) ↔= 0 only if dim y = dim x + 1. Whenever !(y, x) = 1, we say that x is
a facet of y. A well-known example of a Lefschetz complex is a simplicial complex. When
it does not lead to confusion, we will shorten the notation and refer to X as the Lefschetz
complex.

↭ Definition 2. Let f : X → R be a filter on a Lefschetz complex X. A pair (s, t) ↓ X ↑ X

is shallow if f(s) is the maximum among facets of t and f(t) is the minimum among cofacets
of s in the filter. We write SH(X, f) for the set of shallow pairs. Every shallow pair is a
birth-death pair, but not every birth-death pair is shallow.

We consider the following, slightly simplified variant of a discrete Morse function [2].
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2 Topological simplification guided by the depth poset

↭ Definition 3. Let X be a Lefschetz complex. A map h : X → R is called a discrete Morse
function (dMf, for short) if it fulfils the following conditions for all x, y ↓ X:
1. if !(y, x) = 1 then h(x) ↗ h(y) (weak monotonicity),
2. if h(x) = h(y) then either !(y, x) = 1 or !(x, y) = 1 (pairing),
3. the preimage of any singleton under h contains at most two elements (almost injective).

A dMf h induces a combinatorial Forman gradient vector field (later referred to as cvf),
denoted by Vh (see [5]), consisting of pairs of cells with the same value (called vectors) and
the remaining singletons (called critical cells). The above definition allows us to interpret h

also as a filter on X, and therefore, takes advantage of both, the persistence and dynamical
perspectives. By BD(X, h), we will denote the family of o!-diagonal persistence birth-death
pairs of Lefschetz complex X induced by h.

One of the problems in topological simplification (see [3]), is reordering cells to eliminate
certain persistent groups with a minimal number of side e!ects. It is especially interesting to
study such simplifications that leave BD(X, h) unchanged, except for the removed one.

In [1], the authors propose a solution for this problem based on Forman’s vector fields.
They noticed, that by a proper interpretation of a filter as a dMf, we may identify elements
of pairs in BD(X, h) as critical points of a combinatorial gradient. This perspective allows
us to utilize the classical combinatorial dynamic theorem:

↭ Theorem 4 ([6]). Let ω and ε be two critical cells of a gradient vector field V , with exactly
one path ϑ from ε to ω. Then there is a gradient vector field V

↑ω obtained by reversing V

along the V -path ϑ. The critical cells of V are exactly the critical cells of V apart from {ω, ε}.
Moreover, V

↑ω = V except along the path ϑ .

However, the theorem alone gives no guarantee that elimination of a pair of critical cells will
not a!ect the remaining pairs in BD(X, h). The authors of [1] proposed a special partial
order on pairs in BD(X, h) indicating which critical cells are “safe” to be removed. However,
the order was provided only for 0 and 1-dimensional persistence pairs. In our work we apply
similar idea, but using a partial order on BD(X, h) called the depth poset [4], which is well
defined in any dimension.

2 Main results

↭ Definition 5. Let (s, t) ↓ X ↑ X be a pair in a Lefschetz complex (X, dim, !) such that s

is facet of t. A cancellation of (s, t) is the operation producing the new Lefschetz complex
(X ↓

, dim’, !↓), called the quotient, such that X
↓ = X \ {s, t}, dim↓ is a restriction of dim to

X
↓ and !↓(y, x) := !(y, x) + !(y, s) · !(t, x). In particular, the homology of X and X

↓ are
the same.

Note, that cancellation of a shallow pair may create new shallow pairs in X
↓. However, the

following theorem guarantees that, apart from the cancelled one, none of them disappears.

↭ Theorem 6 ([4]). Let h be dMf and let X be the Lefschetz complex filtered by h. Fix
(s, t) ↓ SH(X, h) and let h

↓ be the dMf on the quotient after canceling (s,t). Then
SH(X ↓

, h
↓) ↘ SH(X, h) \ {(s, t)} and BD(X ↓

, h
↓) = BD(X, h) \ {(s, t)}.

The key idea is to consider the Morse complex of cvf Vh, denoted as M(Vh), as another
Lefschetz complex. We can construct an injective filter h

↓ on M(Vh) by restricting dMf h

to critical cells of Vh. In particular, we have SH(M(Vh), h
↓) ≃ BD(M(Vh), h

↓) = BD(X, h).
We notice that, given that there exists exactly one path between the cancelled elements, the
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persistence-aware cancellation of a shallow pair in the Morse complex M(Vh) provided by
Theorem 6 can be translated back to the original space X.

↭ Theorem 7. Let Vh be a cvf on a Lefschetz complex X filtered by dMf h and ϑ be a unique
path between critical points t and s. Then, for every x, y, cells from M(V ↑ω

h ), we have:

!M(V →ω
h

)(y, x) = !M(Vh)(y, x) + !M(Vh)(y, s) · !M(Vh)(t, x).

↭ Definition 8. A linear order on the birth-death pairs is a shallow order if, when performing
cancellations according to this order, each cancelled pair is guaranteed to be shallow at the
current stage. The depth poset is the intersection of all possible shallow orders.

Thus, by combining Theorems 4 and 7, we can use the structure of the depth poset
(reflecting all possible shallow orders) at the level of the Morse complex to systematically
simplify the dMf h on X in a controlled way, by removing only a single persistence pair from
BD(X, h) at a time. This process is illustrated by a diagram in Figure 1, while a specific
example of topological simplification is shown in Figure 2.

V0 M(V0)

V1 M(V1)

V2 M(V2)

. . . . . .

M

inversion of ω0 Lefschetz cancellation of (s0, t0)

M

inversion of ω1 Lefschetz cancellation of (s1, t1)

M

inversion of ω2 Lefschetz cancellation of (s2, t2)

Figure 1 A schematic depiction of the proposed procedure.

Since the depth poset can be calculated in any dimension, this method is completely
independent of the dimension of X.

V0

V1

ℳ(V0)

ℳ(V1)

Inversion of path 
between BC and E

Lefschetz cancelation of  
pair (E,BC)

Figure 2 An example of topological simplification.
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Abstract

We study three fundamental three-dimensional (3D) geometric packing problems: 3D (Geometric)
Bin Packing (3d-bp), 3D Strip Packing (3d-sp), and Minimum Volume Bounding Box (3d-mvbb).
The previous best (absolute) approximation for all three problems is by Li and Cheng (SICOMP,
1990), who gave algorithms with approximation ratios of 13, 46/7, and 46/7 + ω, respectively,
for 3d-bp, 3d-sp, and 3d-mvbb. We provide improved approximation ratios of 6, 6, and 3 + ω,
respectively, for the three problems, for any constant ω > 0.

For 3d-bp, in the asymptotic regime, Bansal et al. (Math. Oper. Res., 2006) showed that there
is no APTAS even when all items have the same height. Caprara (Math. Oper. Res., 2008) gave an
asymptotic approximation ratio of T 2

→ + ω → 2.86, where T→ is the well-known Harmonic constant
in Bin Packing. We provide an algorithm with an improved asymptotic approximation ratio of
3T→/2 + ω → 2.54. Further, we show that unlike 3d-bp (and 3d-sp), 3d-mvbb admits an APTAS.
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1 Introduction

Three-dimensional (3D) packing problems are used to model several practical settings in

production and transportation planning – ranging from cargo management, manufacturing,

3D printing and prototyping, to cutting and loading applications. In this work, we study

three classical 3D packing problems. In all of these problems, the input is a collection of

(rectangular) cuboids (items), each specified by their height, width, and depth. In the 3D

Bin Packing (3d-bp) problem, the goal is to output a packing of all the items using the

minimum number of bins, where each bin is a unit cube. In the 3D Strip Packing (3d-sp)

problem, we are given a three-dimensional strip having a 1 → 1 square base and unbounded

height, and we have to pack all items minimizing the height of the strip. Finally, in the

Minimum Volume Bounding Box (3d-mvbb) problem, we seek to obtain a cuboidal box of

minimum volume that can accommodate all input items. In all these problems, the items

cannot be rotated about any axis, and they must be packed non-overlappingly. Further, we

assume that all items and bins/boxes are axis-aligned.
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2 Improved Approximation Algorithms for Three-Dimensional Bin Packing

3d-bp and 3d-sp generalize several classical strongly NP-hard problems in scheduling

and packing, including (1D) bin packing, multiprocessor scheduling [22], packing squares into

squares [14], and packing cubes into cubes [25]. The survey by Ali, Ramos, Carravilla, and

Oliveira [1] provides a comprehensive overview of 3D packing. With the recent exponential

growth in transportation and shipping, there has been a plethora of work on empirical

procedures and heuristics for 3d-bp [13, 16, 24, 9, 30, 8, 19, 23, 27, 26] and 3d-sp [15, 4,

2, 11, 32, 31]. In contrast, the theoretical exploration of 3D packing has been significantly

limited due to its inherently complicated nature. All the three considered problems are

NP-hard. Since 3d-bp and 3d-sp generalize 2D Bin Packing, they do not admit an APTAS,

as 2D Bin Packing has an asymptotic approximation hardness of 1 + 1/2196 [6]. Furthermore,

it is NP-hard to decide if a set of squares can be packed into a single square bin or not [14] –

thus giving an absolute approximation hardness of 2 for 3d-bp and 3d-sp.

The work of Li and Cheng [22] gives algorithms with absolute approximation ratios of

13, 46/7, and 46/7 + ω for 3d-bp, 3d-sp, and 3d-mvbb, respectively. For 3d-bp, [10, 12] gave

an asymptotic approximation ratio of T 3
→ + ω ↑ 4.836, which was improved to T 2

→ + ω ↑ 2.86

by Caprara [5]. For 3d-sp, a long line of work [22, 21, 29, 28, 18, 3] culminated in an

asymptotic (3/2 + ω)-approximation due to Jansen and Prädel [17]. For general cuboids,

there has been no progress on the absolute approximation ratios for any of the three problems

since 1990 [22] and for asymptotic approximation ratio of 3d-bp since 2008 [5]. In fact,

improved approximability of d-dimensional geometric Bin Packing and Strip Packing, for

d > 2, was listed as one of the ten major open problems in the survey on multidimensional

packing by Christensen, Khan, Pokutta, and Tetali [7].

2 Our Results

Due to space constraints, we only present a brief overview of our results and defer the details

to the full version [20]. First, for 3d-bp, if OPT is su!ciently large, the algorithm of Caprara

[5] already guarantees an absolute approximation ratio less than 3. For the other case, we

show how a packing in k bins can be transformed into 6k structured bins; following which,

for constant k, it is possible to find such a structured packing e!ciently using a variant of

the Generalized Assignment Problem – giving us an absolute approximation ratio of 6.

↭ Theorem 1. There exists a polynomial-time 6-approximation algorithm for 3d-bp.

This directly implies an absolute (6 + ω)-approximation for 3d-sp. With a more careful

analysis, we obtain a slightly better approximation ratio.

↭ Theorem 2. There exists a small absolute constant ε > 0, such that for any ω > 0, there
is a polynomial-time (6 ↓ ε + ω)-approximation algorithm for 3d-sp.

We next show the existence of an APTAS for 3d-sp when we are allowed to use resource

augmentation. Using this, we obtain a (3 + ω)-approximation for 3d-mvbb. Furthermore,

surprisingly, unlike 3d-bp and 3d-sp, we show that 3d-mvbb admits an APTAS – settling

the asymptotic approximability for the problem.

↭ Theorem 3. For any ω > 0, there exists a polynomial-time (3+ω)-approximation algorithm,
and an asymptotic polynomial-time approximation scheme for 3d-mvbb.

Finally, we turn our attention to the asymptotic approximability of 3d-bp. We use

harmonic rounding of the item heights, wherein any height larger than ω (tall items) is

rounded up to the nearest larger number of the form 1/q, for q ↔ N. Using a result of [17],
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there exists a Strip Packing of these rounded items having height at most a (3/2 + ω)-factor

larger than the optimal height (asymptotically), in which the strip is partitioned into Oω(1)

cuboids such that the items packed inside each cuboid are similar. By increasing the height

of the strip by Oω(1), it is possible to pack most items inside these cuboids in such a way

that no tall item is intersected by any horizontal plane lying at an integral height from the

base of the strip. The advantage of this is that it is now possible to obtain a 3d-bp solution

of the packed items into about (1 + ω)H bins, where H is the height of the strip. Finally, we

show that it is possible to pack the remaining items into Oω(1) additional bins, giving us the

following result.

↭ Theorem 4. For any ω > 0, there exists a polynomial-time algorithm for 3d-bp with an
asymptotic approximation ratio (3T→/2 + ω) ↑ 2.54.
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Abstract
We study Geometric Graph Edit Distance (GGED), a graph-editing model to compute the
minimum edit distance of intersection graphs that uses moving objects as an edit operation. We first
show an O(n log n)-time algorithm to render a given unit interval graph (i) edgeless, (ii) acyclic and
(iii) k-clique-free. We next show that GGED becomes strongly NP-hard when rendering a weighted
interval graph (i) edgeless, (ii) acyclic and (iii) k-clique-free. Lastly, we show that minimising the
maximum moving distance for rendering a unit disk graph edgeless is NP-hard over the L1 and L2
distances.
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1 Introduction

Graph modification is a fundamental topic for addressing graph (dis)similarity, which involves

modifying a given graph at the minimum cost by adding or deleting vertices or edges to satisfy

a specific non-trivial graph property. The problem of determining this cost is commonly

known as graph modification problem (GMP) and has applications in various disciplines [2,8,9].

GMPs are often categorised into vertex and edge modification problems, with edit operations

restricted to the vertex and edge sets, respectively. When costs are assumed to be uniform, it

is known that GMP is NP-hard for a wide range of graph classes and properties [1, 6, 13, 15].

The negative bounds of GMPs motivate alternative formulations for graph editing that

consider domain-specific constraints and cost measures. In particular, geometric intersection
graphs (hereafter intersection graphs) have drawn a lot of attention on this subject (see

e.g. [3–5,14]). Given a collection of geometric objects S, the intersection graph G(S) = (V, E)

is a graph such that there exists a one-to-one correspondence between the vertex set V and S,

and the edge set E has an edge if and only if two geometric objects intersect. Fundamental

graph classes included in this model are interval graphs and disk graphs.
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This paper addresses Geometric Graph Edit Distance, a model for modifying

intersection graphs from a geometric perspective. In the intersection graph model, one

natural edit operation is to move the objects of S. We consider this moving operation as

an edit operation and address minimising the cost of moving objects so that the resulting

intersection graph is in a specific graph class. The cost is quantified by the total moving

distance, which is the sum of the (possibly weighted) distance values assigned to each object

in the collection. When the distances are weighted, we say that the intersection graph is

weighted. We also present the minimax variation of the problem, in which the maximum

moving distance is minimised. More precisely, we formulate the two problems as follows.

Problem Statement Let S be a collection of geometric objects and ! be a graph class.

Geometric Graph Edit Distance [10] asks for the minimum total moving distance

of the objects in S so that G(S) is in !. Given a real K > 0 in addition to the above,

minimax-Geometric Graph Edit Distance asks to decide whether a graph in ! can be

realised by moving objects so that the distance of moving of S is at most K for all S → S.

2 Results

We describe our results for Geometric Graph Edit Distance. Our results focus mainly on

interval graphs, and we deal with the following graph classes: !edgeless = {G : G is edgeless},

!acyc = {G : G is acyclic} and !k-clique = {G : G does not contain a k-clique}. Due to

space restrictions, we limit ourselves to only giving proof overviews of the results. The full

version of the paper can be found in [11].

↭ Theorem 1. Given a collection of unit intervals I, Geometric Graph Edit Distance
can be solved in O(n log n) time so that G(I) is in !edgeless.

Proof Overview. Figure 1 illustrates the algorithm. For a given collection I and a real

s ↑ 1, we give a piecewise-linear convex function E : I ↓ R ↔ R, E({I1, . . . , In}, x) =∑n
i=1 fi(x), fi(x) = |x ↗ c(Ii) ↗ (n ↗ i)s| to disperse intervals by equal distance s, where

c(I) is the centre of an interval I and c(Ii+1) ↑ c(Ii) for all i. An interval collection can be

partitioned into subcollections for which E gives an optimal solution. Determining partitions

is done in total O(n log n) time using an unbalanced merge sort approach and minimising E

is done in O(log n) time using binary search on the breakpoints of E. ↫

↭ Corollary 2. Given a collection of unit intervals I, Geometric Graph Edit Distance
can be solved in O(n log n) time so that G(I) is in !acyc and G(I) is in !k-clique.

↭ Theorem 3. Geometric Graph Edit Distance is strongly NP-hard on weighted interval
graphs to realise a graph in !edgeless.

Proof Overview. We show a reduction from 3-Partition [7]. Given an instance (A, B, s)

of 3-Partition, we construct an interval collection IA and show that A can be partitioned

into m subsets if and only if G(IA) is in !edgeless with at most total moving distance

T = 3Bm
2
. ↫

↭ Corollary 4. Geometric Graph Edit Distance is strongly NP-hard on weighted interval
graphs to realise a graph in !acyc and !k-clique.

51



N. Honorato-Droguett and K. Kurita and T. Hanaka and H. Ono 3

I1,2 = {I1, I2} I3,5 = {I3, I4, I5} I6,8 = {I6, I7, I8}

I1,5 = {I1, . . . , I5}

(b)

(a)

(c)

Figure 1 Overview of the algorithm of Theorem 1: (a) The given collection I is partitioned into
three subcollections I = I1,2, I3,5 and I6,8 for which E gives an optimal solution; (b) The movement
is represented by moving each subcollection to its optimal point using E. The subcollections I1,2
and I3,5 intersect; (c) The subcollections I1,2 and I3,5 are merged and then E is minimised for I1,5.
The resulting collection is dispersed with minimum total moving distance.

↭ Theorem 5. minimax-Geometric Graph Edit Distance is strongly NP-hard on
weighted unit disk graphs and !edgeless over the L1 and L2 distances.

Proof Overview. Reduction from Planar 3-SAT [12,16] (see also Figure 2). We build a

disk collection D! using the embedding G! of an instance ” of Planar 3-SAT. In particular,

for a given instance (”, G!) of Planar 3-SAT, it can be shown that the minimum maximum

moving distance so that G(D!) is in !edgeless is at most K if and only if ” is satisfiable. ↫

v1 v2 v3 v4

Φ = (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4)

GΦ

x1 x2 x3 x4 x1 x2 x3 x4

(b) (c)

(a)

Figure 2 Reduction Overview: (a) An arbitrary instance ! of Planar 3-SAT with its rectilinear
embedding G!; (b) The skeleton given by the instance (!, G!); (c) The intersection of the gadget
for c = (x1 ↑ x2 ↑ x4) is removed by moving disks in a way that a free slot of the gadget for x2 is
used. Since c is satisfied when x2 = false, the free slots for the other two gadgets become blocked,
being unable to remove their intersection using the variable gadget for x2.
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Abstract
Reeb Transforms o!er a compact representation of how shapes in Rn change when sliced along
di!erent coordinate directions. We define Reeb Transforms as the collection of Reeb graphs obtained
by collapsing connected components of each level set in all coordinate directions. In this paper,
we develop a rigorous treatment of Reeb Transforms for o-minimal definable sets, emphasizing
stratified spaces up to 3-dimensions, embedded in Rn. We establish that for surfaces in R3, the Reeb
Transform is injective, capturing the essential topological features needed to uniquely reconstruct
such surfaces. We further show that local modifications, under certain regularity conditions, do not
alter the Reeb Transform, thereby demonstrating a form of local stability. However, in dimensions
above three, the Reeb Transform ceases to be injective, indicating the limitations of this descriptor
in higher-dimensional settings. In addition to these main results, we develop several other properties
of Reeb Transforms that underscore their versatility and significance for shape analysis within
o-minimal frameworks.
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1 Introduction

The present work situates shapes in o-minimal structures for tameness; the definable sets

we consider are free from pathological behaviors. This approach follows van den Dries

[12] and others who pioneered tame topology, ensuring properties such as finiteness of the

number of connected components in definable families [6, 10]. In Fujita’s work [9], one finds

further exposition on how o-minimality restricts the complexity of sets and functions, often

permitting finite combinatorial structures such as Reeb graphs to capture an object’s global

topology.

A crucial aspect of Reeb-based analysis is understanding how level sets evolve. A growing

body of recent work [4, 8, 11, 1] formalizes how knowledge of Euler characteristics across all

slicing planes in all directions can be su!cient to reconstruct shapes within Set(d) (class of

all compact, definable subsets of Rn
in an o-minimal structure over R). Our paper leverages

this perspective to establish injectivity results for the Reeb Transform by relating changes in

the Reeb graphs to changes in the connectivity or critical points of the slices.

Within the literature, some authors have focused on transformations (such as isotopies

or small perturbations) that preserve the topological features of surfaces [7, 2, 5, 3]. These

studies align with the notion that unless critical points of the height function are introduced or

removed, the Reeb graphs remain unaltered. Our work expands on this idea by characterizing

the conditions under which open sets can be added or removed without a"ecting the Reeb

Transform.

While the Reeb transform is not in general able to distinguish arbitrary shapes, our

research indicates it is, in fact, injective for certain classes of objects. For example, shapes in

low-dimensional settings can be reconstructed from their Reeb transforms under additional

© Erin Chambers, Shankha Shubhra Mukherjee and Katharine Turner;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
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Shape A (simple disk) Shape B (annulus)

x-axis slice

y-axis slice

Rx(A)
interval

Ry(A)

interval

Rx(B)
loop

Ry(B)

loop

Figure 1 Illustrating injectivity of the Reeb Transform in Set(2). Shape A (a disk) has Reeb
graphs along x or y-axes that are simply intervals. Shape B (an annulus) yields Reeb graphs
containing loops in each direction. Hence RT (A) →= RT (B).

regularity assumptions. Our work continues this investigation, presenting both positive

injectivity results and explicit failure cases in higher-dimensional domains.

2 Results

We briefly summarize our principal statements and define the notation used:

A compact, definable set A → Rd
in an o-minimal structure belongs to the class Set(d).

In particular, Set(2) denotes the family of such sets in R2
. Likewise, Surf(n) denotes all

compact, definable, smooth manifolds of dimension (n ↑ 1) embedded in Rn
. For a unit

direction n̂ ↓ Sd→1
and height t ↓ R, we write LS(A, n̂, t) = { x ↓ A | n̂ ·x = t} to denote the

level set at height t. The Reeb Transform RT (A) is the collection of Reeb graphs obtained

by collapsing connected components of each level set in all coordinate directions. Formally:

RT (A) =

{
Rhk

∣∣∣ k = 1, 2, . . . , n
}

.

where the Reeb Graph Rhk of hk is the quotient space obtained by collapsing each connected

component of each level set of hk|A to a single point. We define hk|A as:

hk

∣∣
A

: A ↔ R, hk

∣∣
A

(x1, x2, . . . , xn) = xk.

We define Set(d, 1) as a 1-dimensional stratified space within Set(d).

↭ Lemma 1. The Reeb transform is injective when restricted to Set(2).[Fig. 1]

↭ Lemma 2. Let A ↓ Set(d, 1). Then for any fixed n̂ ↓ S3 and height t ↓ R, there exist
ωn, ωt > 0 such that for all 0 < ε < ω and for all v ↓ Sd→1 with n̂ · v ↓ (1 ↑ ωt, 1), the Euler
characteristic of LS(A, n̂, t) equals that of the corresponding segment of the Reeb graph (in
direction v) between heights t ↑ ε and t + ε.

↭ Proposition 1. Let nk be the number of vertices in RT (A, v) at height t of degree k. For
P the plane with normal v and height t, the Euler characteristic

ϑ(A ↗ P ) =

∑

v

(2 ↑ deg(v))
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     Surface A (Cactus)

Reeb Graph of A   int Reeb Graph of A   ext

Figure 2 Illustrating Theorem 3. A dividing surface A ↑ R3 splits space into an interior (Aint)
and exterior (Aext).

We can rewrite this formula in terms of the number of connected components as

ϑ(A ↗ P (n̂, t)) = 2C(A, n̂, t) ↑ C(A, n̂, t ↑ ω) ↑ C(A, n̂, t + ω) (1)

where C(A, n̂, s) denotes the number of connected components in A ↗ P (n̂, t) and ω > 0 is
su!ciently small.

↭ Corollary 2. The Reeb transform is injective when restricted to Surf(3)

↭ Theorem 3. Let A ↓ Surf(3) be a dividing surface. Let Aint denote the A union the
interior of A and Aext denote A union the exterior of A. A is encoded by the combination
of RT (Aint

) and RT (Aext
). [Fig. 2]

↭ Definition 3 (Concave Point). Let Y → Rd be a set in Set(d) (with no restriction on its
intrinsic dimension), and let y ↓ Y . We say that y is a concave point of Y if there exist
ω > 0 and a plane P (n̂, t) := {x ↓ Rd | n̂ · x = t} (for some unit vector n̂ ↓ Sd→1 and real
number t ↓ R) such that:

(
Y c ↗ B(y, ω)

)
↘ {x ↓ Rd | n̂ · x < t},

where Y c is the complement of Y in Rd and B(y, ω) is the open ball of radius ω centered at y.
In other words, within some neighborhood around y, the complement of Y lies strictly on

one side of the plane P (n̂, t). Equivalently, y is a local minimum of Y in the direction n̂.

↭ Proposition 4. Let A ↓ Set(d) for d ≃ 3, and let X ↘ A be an open, simply connected
subset. Then

RT (A \ X) = RT (A) ⇐⇒ the closure of X contains no concave points of X.
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Abstract

Vineyards are a common way to describe persistence diagrams of a data set which is changing,
as strong stability means that it is possible to pair points in “nearby” persistence diagrams, yielding
a family of point sets which connect into curves when stacked. Recent work has also studied
monodromy in the persistent homology transform, demonstrating some interesting connections
between an input shape and monodromy in the persistent homology transform for 0-dimensional
homology embedded in R2. In this work, we re-characterize monodromy in terms of periodicity of
the associated vineyard of persistence diagrams. We construct a family of objects in any dimension
which have non-trivial monodromy for l-persistence of any periodicity and for any l. More generally
we prove that any knot or link can appear as a vineyard for a shape in Rd, with d → 3. This shows
an intriguing and, to the best of our knowledge, previously unknown connection between knots and
persistence vineyards.
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1 Introduction

This paper explores links between persistent homology [13, 16, 12, 15, 11], in particular the
new research direction around monodromy [2], and knot theory [9, 10, 17, 18, 14, 3, 4].

For a continuous one parameter family of filtrations, we can “stack” the persistence
diagrams of these filtrations; the resulting object is called a vineyard [8]. Thanks to
the stability of persistence, the points in the diagram move continuously (even Lipschitz
continuously) with the parameter. This means that we can follow a point in (the stack
of) the persistence diagrams; the resulting curve is called a vine. We work with extended
persistence [7] in order to retain finite coordinates for vines for each filtration in the family.
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Monodromy is the e!ect where if one makes a loop in a base space of a covering or fibre
bundle, the lifted curve may not end up in the same point as you started out with. We say
the monodromy is of period 2ωk (with k > 0) if the lifted curve returns to the starting point
after k revolutions in the base space.

In our context the base space for monodromy is a closed curve or loop, ε : [0, 2ω] → Rd.
A manifold M (mostly some knot, link, or some o!set of a knot or link) is embedded
into the same Euclidean space. The fibres are the persistence diagrams of the distance
function restricted to the manifold M, that is d(x, ε(t))M, for x ↑ M, see Figure 1. The
bundle therefore is the vineyard for t in [0, 2ω] and identifying persistence diagrams for
t = 0, 2ω. The lifted curve is a vine ε̃(b0,d0)(t) in the vineyard starting at (b0, d0) in the
persistence diagram of d(x, ε(0))M and the periodicity is the smallest k > 0, such that for
all i, ε̃(b0,d0)(0) = ε̃(bi,di)(2ωk) (we also handle the more complicated setting where vines
may enter the diagonal in the full paper).

Monodromy was first identified in the context of multidimensional persistence in [5].
In [2], the occurrence of monodromy in the context of the directional persistence transform
is studied, more precisely for 0-dimensional persistence modules of objects embedded in
R2. They conclude with several interesting open questions related to the interpretation of
monodromy and whether it can be demonstrated in higher dimensions.

2 Our contribution

We answer the latter question by showing that monodromy can occur both in any order
homology i, dimension d with d > i, and any period 2ωk in a vineyard.

↭ Theorem 1. The vineyard of the distance function in Rd can exhibit monodromy for
persistence up to the (d ↓ 2)th homology and for extended persistence up to the (d ↓ 1)th
homology. Moreover the periodicity of the monodromy can be 2ωk, for any k ↑ Z→2.

Additionally, we will prove that for every knot or link there exists an embedded manifold
and a family of functions on M (where each function is induced by the distance to a point
in the ambient space, and where in turn each point comes from a curve ε) such that the
vineyard of the family of functions yields a braid representing the initial knot or link in the
sense of the theorem of Alexander for links [1].

↭ Theorem 2. Given a knot or link, d, l ↑ Z>0, with, d ↔ 3 and l < d ↓ 2, then there exists
an M ↗ Rd and a closed curve ε ↗ Rd such that by identifying the ends of the l-vineyard of
d(x, ε(t))M, the restriction of the Euclidean distance function to the manifold M, will yield
a knot or link, which contains the given knot or link as a subset. That is, it is topologically
the initial knot or link after removing some spurious connected components.

We now provide a brief outline of the construction used in the proofs of both theorems.
Thanks to Alexander’s theorem [1], a given link can be represented as a closed braid with I
strands. We start with an embedding of the closed braid which lies in a neighbourhood of an
annulus in the plane and the braid is planar with the exception of small neighbourhoods of
the crossing points, see the first two segments of Firgure 2.

We then modify (if necessary) the braid such that the crossings are equally parsed, by
which we mean the angular parameter of the annulus is subdivided into 2I intervals such
that each interval together with its opposite interval contain exactly one crossing between
them. They are known as crossing and opposing crossing free intervals respectively.

We further modify the embedding of the braid by twisting the annulus 90 degrees in the
direction orthogonal to the plane into which the annulus was originally embedded. We define
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an observation loop ε to be the curve that follows that twisted annulus on the outside at a
constant distance, see the final segment of Firgure 2.

Now for a generic crossing and containing interval, there are two specific strands to
consider. These two strands give rise to two or four births in the persistence diagram of
d(·, x)|M for any point in x in the same angular interval of the observation loop. The 0-cycle
will die if the strand on which it was created is connected to a strand that was born earlier (a
similar statement holds for l-cycles). We can tune the death times of the cycles by pushing
the strands, which are non crossing by construction, inward or outward in the opposing
non-crossing interval to maintain the appropriate crossings in the vineyard braid to satisfy
Theorem 2. Finally, we demonstrate the validity of Theorem 1 by passing the l-dimensional
o!set of a particular braid through the above construction.

Figure 1 Braided vineyard over a trefoil knot displaying monodromy. The filtration is the distance
function from points on the oriented observation loop.

Figure 2 Schematic of the construction used in the proofs of Theorems 1 and 2.
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Abstract

Understanding data structure is key to uncovering hidden patterns and enhancing model expressivity.
While persistent homology quantifies holes across scales, recent cohomology-based invariants exploit
a richer multiplicative structure. We present the first implementation of persistent cup-length [5],
which detects not only the presence but also interaction of holes. We prove our algorithm can
identify toroidal structures in data and demonstrate it on grid cells, with applications in ML.
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1 Introduction

Topological Data Analysis (TDA) provides a powerful framework for understanding the
“shape” of data by capturing topological features such as connected components, cycles, and
voids via persistent homology [9, 10, 15, 18, 4, 8, 2, 3]. However, persistent homology focuses
on the additive structure of homology groups and can fail to distinguish spaces with the
same Betti numbers but fundamentally di!erent topological structures (e.g., a 2-torus vs. a
wedge of two circles and a sphere; see Figure 1).

Recent work has shown that incorporating the cup product from cohomology can overcome
these limitations [12, 17, 1, 13, 6, 5, 7, 14]. The cup product encodes interactions between
cycles, enabling a persistent cup-length invariant that detects nontrivial 2-dimensional
structure (e.g., tori) hidden from homology alone [5]. In particular, a cup-length of 2,
generated by linearly independent 1-cocycles, indicates the existence of two such cocycles
whose cup product forms a nontrivial 2-cocycle. This suggests the presence of a toroidal
component under suitable conditions. This refined invariant enables us to distinguish certain
topologically distinct spaces that share the same homology.

Even though cohomology-based invariants have significant potential, their adoption in
TDA has been limited because of computational challenges. We bridge this gap by presenting
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the first implementation and applications of persistent cup-length with polynomial-time
guarantees [5]. Further context is provided in the Appendix. Our contributions are:
1. An implementation of a persistent cup-length algorithm for both continuous (Ripser +

landmarks) and discrete simplex-wise filtrations. Our code will be available on GitHub.
2. Proof that a persistent cup-length of 2 in a connected closed orientable surface implies

the existence of a toroidal structure.
3. Experimental validation on synthetic data and grid cell recordings, confirming that

persistent cup-length detects toroidal topology.
4. Discussion of practical implications for neural data, diagnosing recurrent neural network

(RNN) dynamics, and understanding quasiperiodicity (see Appendix).

Limitations remaining for future work include computational complexity for large datasets,
and sensitivity to the choice of cocycle representatives and the parameters of the filtration.
E"cient landmark selection strategies and parameter tuning will be key.

2 Theory

Persistent cup-length detects toroidal structures

We say that a space X has a toroidal component if its cohomology ring contains a subring
isomorphic to the cohomology ring of T 2. In the special case where X is a connected,
closed, oriented surface, the classification theorem of surfaces implies that if X has a toroidal
component, then it is a connected sum of tori. This provides a topological interpretation of
the notion of a toroidal component.

Practical considerations: landmark-based subsampling and stability

Computing persistent cohomology on large datasets can be computationally expensive. We
mitigate this by employing landmark-based subsampling. Landmarks allow us to approximate
the full dataset while preserving key topological features. Further, the stability of persistent
cup-length (see [5, Theorem 2]) ensures that our computed persistent cup-length invariant is
robust under subsampling.

3 Algorithm

The persistent cup-length algorithm operates in polynomial time [5]. We implemented two
versions of the algorithm: one for discrete, simplexwise filtrations and another for continuous
Vietoris–Rips filtrations computed using Ripser [16]. Our implementation is summarized in
the appendix and addresses multiple bugs in the implementation proposal in [5].

Our implementation uses a distance-matrix representation of the input data. We use Ripser
to compute a set of representative cocycles for the persistence barcodes. The main part of
our algorithm solves the coboundary condition problem, determining whether a given cocycle
is a coboundary at di!erent filtration times. To ensure broad applicability, we incorporate
the landmarks feature, reducing the dataset size without significantly compromising the
result quality. We validated our implementation by sampling points from a torus and from
S1 → S2 → S1 (see Figure 1). The algorithm successfully identifies a cup length of 2 persisting
for the torus, but, as predicted by theory, no cup length higher than 1 is observed for
S1 → S2 → S1.
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Figure 1 (Top) Torus S1 → S1; (Bottom) S1 ↑ S2 ↑ S1: point cloud (left), persistence diagram
(middle), and cup-length computation (right). Persistence (via 150 landmarks) reveals two persistent
1D cycles and one 2D void in both datasets, making them indistinguishable by homology alone.
Cup-length computation shows the two most persistent 1D bars (orange), the top 2D bar (green),
and the cup-length 2 interval (black): cup length 2 is present in the torus, absent in S1 ↑ S2 ↑ S1.

4 Experiments: Grid cells

Recently, [11] used persistent homology to show that activity of grid cells spans a manifold
consistent with toroidal topology. However, persistent homology alone does not conclusively
prove that the underlying topology is toroidal. By employing our persistent cup-length
invariant, we reliably confirm the toroidal topology of grid cell population activity in 17 out
of 27 grid modules analyzed in [11] spanning varying behavioral conditions and di!erent
environmental contexts. An example analysis of one grid module is shown in Figure 2.

Figure 2 (Left) UMAP-based visualization of grid module activity (149 cells, rat R, day 1, OF,
module 2); (Middle) persistence diagram; (Right) cup-length diagram showing top 1D bars (orange),
top 2D bar (green), and cup-length 2 interval (black).
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Abstract

A triangulation of a surface is a finite collection of disjoint plane triangles whose sides are partially

matched, encoding a compact orientable polyhedral surface. In this paper we consider the Delaunay

triangulation of a closed surface whose vertices are the singularities of the surface (except for flat

tori). It is generically unique. We provide an e"cient algorithm to compute it from any triangulation

of the surface. This allows to pre-process a triangulation before computing shortest paths on its

surface.
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1 Introduction

In one of its simplest forms a triangulation T is a finite collection of disjoint plane triangles
together with a partial matching of the sides of the triangles such that any two matched sides
have the same length (Figure 1). This very simple data structure appears under di!erent
names in the literature (intrinsic triangulation [3], portalgon [2]). Cutting out the triangles
from the plane and identifying the matched sides isometrically, respecting the orientations
of the triangles, provides a compact orientable polyhedral surface S(T ). The surface S(T )
is closed if, in addition, it is connected and without boundary. Such surfaces can also be
obtained from meshes, triangles in R3 glued along their edges. Cutting the edges of a mesh
and laying out the resulting triangles in the plane provides a triangulation of its surface. Yet
triangulations are more general than meshes: most triangulations cannot be obtained from a
mesh this way.

In this paper we consider the Delaunay triangulation of a closed surface whose vertices are
the singularities of the surface (except for flat tori). It is generically unique. Our contribution
is an e"cient algorithm to compute it from any triangulation of the surface.

Not all triangulations are suitable for computation. Prominently, shortest path algorithms
are a!ected by the happiness [2] of the triangulation, the maximum number of times a shortest
path on its surface visits a triangle, which is unbounded, in stark contrast with meshes
(whose edges are shortest paths in their surface). Delaunay triangulations have bounded
happiness [2], so our algorithm can be used to pre-process a triangulation before computing
shortest paths on its surface, answering a problem posed almost 20 years ago in a blog post
by Erickson [1], and again in SoCG’23 [2].

We now describe our main result and its proof in more detail.

2 Main result

Replacing triangles by generic polygons in the definition of triangulation gives a tessellation.
Omitting the case of flat tori here for simplicity, it is classical that on every other closed ori-
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Figure 1 (Left) A triangulation T : two polygons in the plane with two matched sides, in red.

(Right) The surface S(T ), and the graph T 1
embedded on S(T ).

entable polyhedral surface S, the Voronoi diagram of the singularities is dual to a tessellation
D of S, the Delaunay tessellation of S (here the 1-skeleton of the Voronoi diagram is the set
of points whose distance to the sources is realized by several shortest paths; in particular the
open Voronoi cells are homeomorphic to disks). The Delaunay tessellation is generically a
triangulation. If not, triangulating its faces provides the Delaunay triangulation(s).

The (global) aspect ratio of a triangulation T is the greatest side length of a triangle of
T divided by the smallest height of a (possibly distinct) triangle of T . Our main result is
that if the surface S(T ) is closed, then the Delaunay tessellation of S(T ) can be computed
from T in time polynomial in the number n of triangles of T and in the logarithm of the
aspect ratio of T :

↭ Theorem 1. Let T be a triangulation, with n triangles, of aspect ratio r, whose surface

S(T ) is closed. One can compute the Delaunay tessellation of S(T ) in O
→(n3 log4(r + 1))

time.

Here O
→() stands for for domination up to a poly-logarithmic factor. We analyze all

our results in the real RAM model of computation. The algorithm of Theorem 1 remains
polynomial in n and log(r + 1) when r is the local aspect ratio of T , the maximum over the
triangles t of T of the maximum side length of t divided by the smallest height of t.

3 Overview and techniques for the proof of Theorem 1

On the surface S(T ) of a triangulation T , we consider the graph T
1 corresponding to the

sides of the triangles of T . Every edge e of T
1 is a segment of T

1, a geodesic relatively
disjoint from the singularities of the surface. Adapting the notion of happiness to our needs,
we define the segment-happiness of e as the maximum number of times it is visited by a
shortest path. The segment-happiness of T is the maximum segment-happiness of the edges
of T

1. To prove Theorem 1, the crux of the matter is to transform the input triangulation
into a triangulation of low segment-happiness.

For that our approach is to focus on triangulations T whose surface S(T ) is connected
but may have boundary, is not simply connected (equivalently, is not homeomorphic to a
sphere nor a disk), and more importantly has no positively curved point in its interior (no
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singularity surrounded by an angle smaller than 2ω). The systole of S(T ) is the smallest
length of a non-contractible geodesic closed curve in S(T ). Our key technical result is:

↭ Proposition 2. Let T be a triangulation with n triangles, of maximum edge length L.

Assume that the surface S(T ) is connected, is not simply connected, and has no positively

curved point in its interior. Let s > 0 be at most the systole of S(T ). One can compute in

O(n log2(n) log2(L/s + 2)) time a triangulation of S(T ) with O(n log(L/s + 2)) triangles,

and of segment-happiness O(log(n) log2(L/s + 2)).

The algorithm for Proposition 2 is a finely tuned combination of elementary operations
such as inserting and deleting edges and vertices. While the algorithm itself is relatively
simple, its analysis is more involved. For that we introduce a new parameter on the segments
of a surface, the enclosure, possibly of independent interest.

We extend Proposition 2 to surfaces having positively curved points, essentially by cutting
out caps around those points. Once we have a triangulation of low segment-happiness, we can
compute shortest paths on its surface, adapting the algorithm of [2, Section 3], to construct
the Voronoi diagram, and then the Delaunay tessellation. Theorem 1 follows.
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Abstract
It is well known that H

2(X;Z) is isomorphic to the homotopy classes of maps X → K(Z, 2) = CP
→.

Given X a finite simplicial complex and [ω] ↑ H
2(X;Z), we describe an algorithmic approach to

constructing a map of the 3-skeleton X
3, which retains the same second cohomological information

as X, into S2 = CP
1 ↓ CP

→ that realizes this isomorphism between cohomology and homotopy
classes. From a data-application perspective, this gives a method to represent second-cohomological
data spatially. We also provide Python code that computes said map restricted to the 2-skeleton X

2.
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1 Introduction

Topological methods, such as persistent homology [4], have been prominent in machine
learning [9, 5]. By Brown representability [1], persistent cohomology [2, 8] has the advantage
of producing coordinate representations of data with applications in nonlinear dimensionality
reductions. However, the spaces associated to higher cohomologies are often di!cult to parse.

Let X denote a finite simplicial complex and ω → C
2(X;Z) a 2-cocycle. Brown repres-

entability implies that H
2(X;Z) ↑= [X;CP

→]. The long exact sequence of cohomology for
the pair (X, X

3) shows that the inclusion map i : X
3 ↓ X is an isomorphism on H

2(•;Z).
Thus, we will operate with the heuristic that keeping the 3-skeleton is enough to retain the
2-dimensional topological information of X. In this work, we give an algorithmic outline of
how to produce the correspondent map X

3 ↓ CP
1 ↔ CP

→. We remark that the methods
discussed can be adapted to produce a map X

n+1 ↓ Sn ↔ K(Z, n) from ω → C
n(X;Z).

2 Defining the Map on the 2-Skeleton

We know the cohomology class [ω] corresponds to a map f : X ↓ CP
→. Explicitly, the map

f may be realized as follows.

↭ Proposition 1. Suppose f̃ : X
2 ↓ CP

→
such that (i) f̃(X1) = ↗ , (ii) f̃(X2) ↔ CP

1
, and

(iii) f̃ factors as maps g ↘ q in the diagram:

X
2 CP

1 ↑= S2 ↔ CP
→

∨
ω↑X,dim ω=2

S2
ω

f̃

natural quotient q
g

,
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2 Realizing Coordinates of the Second Integral Cohomology Group

and the induced map g↓ : H2(
∨

ω↑X,dim ω=2
S2

ω;Z) ↓ H2(CP
→;Z) = Z sends [S2

ε] to ω(ε) → Z.

Then f̃ can be extended to a function f : X ↓ CP
→

such that f(X3) ↔ CP
1

and corresponds

to the class [ω].

Such f̃ can always be explicitly constructed by defining the map g, which amounts to
explicitly constructing a map gω : S2

ω ↓ S2 of degree ω(ε) for each 2-simplex ε → X. Since f̃

is defined on X
2 rather than the quotient, we will instead construct maps ε ↓ S2 that is

constant on ϑε and induces the desired map gω : S2
ω ↓ S2.

One might consider using smooth maps, but there are di!culties in extending this to
3-cells. We use simplicial maps instead to make our analysis more tractable. We fix the
codomain to be S2

min
, the four-point minimal triangulation of S2 (see Figure 1), and subdivide

the domain ε to produce a simplicial map into S2
min

. Instead of barycentric subdivision, we
use a special case of the edgewise subdivision (see [3]) known as the midpoint division.

↭ Definition 2. Let ε be a standard 2-simplex of X, the m-th subdivision div(ε, m) of ε

as follows. By convention, div(ε, 0) = ε. We define the div(ε, 1) as the subdivision of ε by

joining the 3 midpoints of the edges of ε together (see left of Figure 1). For m > 1, we define

div(ε, m) recursively by replacing each 2-simplex of div(ε, m ≃ 1) with a copy of div(ε, 1).

Observe that div(ε, m) may be decomposed into four copies of div(ε, m ≃ 1), with one copy
in the center.

1 ⇐↓ 1 2 ⇐↓ 2

0 ⇐↓ 0

3 ⇐↓ 30 ⇐↓ 0 0 ⇐↓ 0

1 ⇐↓ 0 2 ⇐↓ 0

0 ⇐↓ 0

3 ⇐↓ 00 ⇐↓ 0 0 ⇐↓ 0

1 ⇐↓ 3 2 ⇐↓ 2

0 ⇐↓ 0

3 ⇐↓ 10 ⇐↓ 0 0 ⇐↓ 0

1 2

3

0

S2
min

Degree +1 Map Degree 0 Map Degree ≃1 Map

Figure 1 Example realizing degree ↔1, 0, +1 self-maps of S2
min.

1 2

3

1 2

3

0

1 ⇐↓ 3 2 ⇐↓ 2

0 ⇐↓ 0

3 ⇐↓ 1
0 ⇐↓ 0 0 ⇐↓ 0

Degree ↔1 Map

Quotient Map

S2
min

Figure 2 Example realizing a degree -1 map. Every blue-vertex is mapped to 0 ↑ S2
min.
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+1

+1

+1 +0

1 2

3

0

S2
min

Degree +3 Map

Quotient

Figure 3 Example realizing a degree 3 map. Every blue-vertex is mapped to 0 ↑ S2
min.

↭ Definition 3. Let n(ε) = 0 if ω(ε) = 0 and n(ε) = k + 2 if ω(ε) ⇒= 0 and k is the smallest

number such that ω(ε) ⇑ 4k
. We define the simplicial map !ω : div(ε, n(ε)) ↓ S2

min.

1. If |ω(ε)| = 0, we send all three vertices to 0.

2. If 0 < |ω(ε)| ⇑ 1, we sub-divide the 2-simplex ε twice. Recall div(ε, 2) decomposes into

four copies of div(ε, 1) and let T1 be the component in the center. Define the simplicial

map on T1 with degree ω(ε) according to Figure 1. For every other vertex that has not

been assigned a value, send it to 0 → S2
min

. See Figure 2 for an example on the degree ≃1.

3. If 1 < |ω(ε)| ⇑ 4, we sub-divide div(ε, 2) to div(ε, 3). In this case, div(ε, 3) decomposes

into four copies of div(ε, 2), that each has their own center T1, T2, T3, T4 respectively.

Define a simplicial map on Ti of degree di → {≃1, 0, +1} according to Figure 1 such that

ω(ε) = d1 + d2 + d3 + d4. For every other vertex that has not been assigned a value, send

it to 0 → S2
min

. See Figure 3 for an example on the degree 3.

4. In general, if 4k↔1
< |ω(ε)| ⇑ 4k

, sub-divide until div(ε, k + 2). div(ε, k + 2) splits

into 4 copies of div(ε, k + 1), say S1, S2, S3, S4. By induction, for any 0 ⇑ di ⇑ 4k↔1
,

we can define !ω|Si such that !ω|ϑSi ⇓ 1 → S2
min

and has degree di. Choosing d1, ..., d4

appropriately, the four maps glue together to give a map of degree ω(ε) = d1 +d2 +d3 +d4.

↭ Theorem 4. The map !ω : div(ε, n(ε)) ↓ S2

min induces a map of degree ω(ε). (Here the

induced map is given by quotienting the boundary)
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4 Realizing Coordinates of the Second Integral Cohomology Group

3 Extending to 3-Simplicies

Let ϖ → X be a 3-simplex, by definition it bounds 2-simplices F1, ..., F4 of various degrees.
Without loss, we can subdivide all four faces R ⇔ maxi↑{1,2,3,4} n(Fi) times and still obtain
a simplicial map ϱ : F1 ↖ ... ↖ F4 ↓ S2

min
of appropriate degrees on the 4 faces. Furthermore,

the successive midpoint subdivisions induce a subdivision ϖR of ϖ (see [3]).

↭ Theorem 5. The map ϱ extends to a simplicial map ϖR ↓ S2
min

if and only if the 1-skeleton

(ϖR)1
has a solution to the following graph coloring question: Consider the vertices of S2

min

as a coloring set. Does there exist a coloring of (ϖR)1
, extending the coloring of the boundary

by ϱ, such that no K4-subgraphs of (ϖR)1
have un-repeated colors?

Since ϱ is by construction null-homotopic (it is constructed out of the values of a 2-
cocycle), we know that for R su!ciently large, a solution would exist by the virtue of
simplicial approximation theorem (see Chapter 2.C of [6]), which also gives a suitable bound.

4 Implementation

A Python implentation of the approach discussed in Section 2 is available at the source code
[7]. The graph coloring problem in Theorem 5 is also an interesting direction we plan to
investigate in further work.
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Abstract
We extend the Erdös-Szekeres convex polygon problem to arbitrary point sets in Rd. For n, l > d Ø 2,
let ESd(l, n) be the smallest integer N such that any set of at least N points in Rd contains either l

points contained in a common (d ≠ 1)-dimensional hyperplane or n points in convex position. We
prove that there is a constant c = cd > 1 such that for each l, n > d Ø 3,

l ≠ d + 2Â d

2 Ê ≠ 1
2Â d

2 Ê
· 2cdn

1
d≠1 Æ ESd(l, n) Æ l ≠ d

d! · 2O( dn
log log log log n ).
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1 Introduction

1.1 Erdös-Szekeres theorem
For d Ø 2, we say that a finite point set P in Rd with |P | Ø d + 1 is in general position if no
(d + 1) points lie on a common (d ≠ 1)-dimensional hyperplane. We say that P is in convex
position if every point of P is a vertex of conv(P ) and they are in general position. For
n > d Ø 2, let ESd(n) be the smallest integer N such that any set of at least N points in Rd in
general position contains n points in convex position. In 1935, Erdös and Szekeres [3] proved
ES2(n) Æ

!2n≠4
n≠2

"
+ 1. In 1960, they [4] showed ES2(n) Ø 2n≠2 + 1 and this bound is believed

to be optimal. In 2017, Suk [8] gave a great improvement which is ES2(n) Æ 2n+O(n
2
3 log n).

Shortly after, Holmsen et al. [5] showed that ES2(n) Æ 2n+O(


n log n) by optimizing Suk’s
argument. See [1] for a detailed proof. Currently, this is the best known upper bound.

Erdös and Szekeres also noted in their 1935 paper [3], that the number ESd(n) is finite
for all n > d Ø 3. Recently, Pohoata and Zakharov [7] showed that ESd(n) = 2o(n) for d Ø 3.
Their o(n) takes the form n

log(5) n
where log(k) n is the k-th iterated logarithm function.

On the other direction, Károlyi and Valtr [6] showed that there is a constant c = c(d) > 1
such that ESd(n) Ø 2cn

1
d≠1 for every d Ø 2. Füredi conjectured that ESd(n) = 2�(n

1
d≠1 ).

1.2 Erdös-Szekeres theorem for arbitrary point sets
For n, l > d Ø 2, let ESd(l, n) be the smallest integer N such that any set of at least N

points in Rd contains either l points contained in a common (d ≠ 1)-dimensional hyperplane
or n points in convex position. In 2024, Conlon et al. [2] gave the upper and lower bounds
for the case d = 2. that is there exists a constant C > 0 such that for each l, n Ø 3,

(3l ≠ 1) · 2n≠5
< ES2(l, n) < l

2 · 2n+C


n log n

.

0 This is an abstract of a presentation given at CG:YRF 2025. It has been made public for the benefit
of the community and should be considered a preprint rather than a formally reviewed paper. Thus,
this work is expected to appear in a conference with formal proceedings and/or in a journal.
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We give the upper and lower bounds for ESd(l, n). Omitted proofs can be found in the full
version on arXiv:2501.03645.

2 Upper bound

Valtr [9] showed that the inequality

ESd(n) Æ ESd≠1(n) Æ · · · Æ ES2(n)(Æ 2n+O(


n log n))

holds. The idea of the proof uses a simple projection technique. Consider any set X of
at least ESd≠1(n) points in general position in Rd and its projection Y onto a generic
(d ≠ 1)-dimensional hyperplane. Since |Y | Ø ESd≠1(n), there is a subset Z of size n in convex
position. He observed that the set obtained by lifting Z back to former space Rd is also in
convex position. This implies the above inequality. One might think that a similar idea
shows ESd(l, n) Æ ESd≠1(l, n) for d Ø 2. However, this is not always true. This is because
when projecting a d-dimensional point configuration onto (d ≠ 1)-dimensional space and
then trying to reconstruct the d-dimensional configuration, n-points in convex position in
(d ≠ 1)-dimensions are not always in general position when projected back to d-dimensions.
It should be noted once again that, in order for a set of points to be in convex position,
it must be in general position. We did not find any proof using projection techniques to
establish this type of inequality. Our approach is as follows: Consider a point set X in Rd

which contains no l points on the same (d ≠ 1)-dimensional hyperplane and evaluate the
maximum size of subsets of X in general position. For d Ø 3, we obtain the following upper
bound for ESd(l, n) by using this method.

I Theorem 1. For d Ø 3,

ESd(l, n) Æ l ≠ d

d! · 2O( dn
log log log log n )

.

Using a similar approach for d = 2, we obtain the following upper bound:

ES2(l, n) Æ (l ≠ 1) ·
3ES2(n) ≠ 1

2

4
+ ES2(n) . l · 4n+O(


n log n)

.

This bound gives a worse estimate than the upper bound by Conlon et al. [2], unless l is
sufficiently large compared to n.

3 Lower bound

As we mentioned above, Kalolyi and Valtr [6] proved ESd(n) Ø 2cdn

1
d≠1 for some cd > 1.

Their construction is as follows: Start with one point set X0, and Xi+1 is obtained from
Xi by replacing each point x œ Xi with two points x ≠ v(x) and x + v(x) where v(x) =
(v1(x), . . . , v

d(x)) is a vector which satisfies 0 < v
1(x) < v

2(x) < · · · < v
d(x) < Ái and

v
f (x) < Áiv

f+1(x) for every 1 Æ f Æ d ≠ 1 and Ái > 0 be sufficiently small. Then, apply a
small perturbation (i.e. taking Ái sufficiently small) to Xi+1 to be in general position. By
construction, we have |Xi| = 2i. See Figure 1. The key lemma is that the inequality

mc(Xi+1) Æ mc(Xi) + mc(fid≠1(Xi)) (1)

holds where mc(X) := max{|S| : S(™ X) is in convex position} and fid≠1 : Rd æ Rd≠1 is
the projection to the (d ≠ 1)-dimensional hyperplane {xd = 0}. We obtain the following
lower bound for ESd(l, n) by generalizing their construction.
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I Theorem 2. There is a constant c = cd > 1 such that

ESd(l, n) Ø
l ≠ d + 2Â d

2 Ê ≠ 1
2Â d

2 Ê
· 2cdn

1
d≠1

.

Here the order of the lower bound is roughly ESd(l, n) & l≠1
d

· 2cdn

1
d≠1 .

X0 X1 X2 X3

Y1 Y2 Y3

Figure 1

To prove Theorem 2, we consider the set constructed by replacing many points on the
line segment conv(x ≠ v(x), x + v(x)) for each i Ø 1 and each x œ Xi. More precisely, for a
point x œ X, we define the set

Px(Á, d, l) =

Y
____]

____[

{x ± 1
k

v(x) : k = 1, . . . ,
1
2 Â 2(l≠1)

d
Ê} (d : even, l : odd)

{x ± 1
k

v(x) : k = 1, . . . ,
1
2 Â 2(l≠1)

d
Ê ≠ 1

2 } fi {x} (d : even, l : even)
{x ± 1

k
v(x) : k = 1, . . . ,

1
2 Â 2(l≠2)

d≠1 Ê} (d : odd, l : even)
{x ± 1

k
v(x) : k = 1, . . . ,

1
2 Â 2(l≠3)

d≠1 Ê ≠ 1
2 } fi {x} (d : odd, l : odd).

and define Yi+1 as the set obtained by replacing each point x in Xi with Px(Ái, d, l). The
size of Px(Ái, d, l) is Â 2(l≠1)

d
Ê when d is even, and Â 2(l≠2)

d≠1 Ê when d is odd.�

I Proposition 3. For each i Ø 1, the set Yi contains no l points on the same (d ≠ 1)-
dimensional hyperplane.

Note that if the size of Px(Ái, d, l) were any larger, Proposition 3 would not hold. See Figure
2.

I Lemma 4. For each i Ø 1, mc(Yi) = mc(Xi).

Thus, from (1) and Lemma 4, we obtain mc(Yi) Æ 2i
d≠1. Finally, simple counting shows

that |Yi| Ø l≠d+2Â d
2 Ê≠1

2Â d
2 Ê · 2i and this proves Theorem 2.
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(d-1)-flat

(d-2)-flat

d : even.

d : odd.

Â2
d
(l ≠ 1)Ê

Â 2
d≠1(l ≠ 2)Ê

Rd

Rd

Figure 2

Remark. Károlyi and Valtr also showed that mc(Xi) Æ 2
(d≠1)! i

d≠1 + O(id≠2) holds. This
gives cd ¥ 2e

≠1
d ¥ 20.37d. See Appendix in [6]. Although the lower bound in Theorem 2 also

holds for d = 2, it gives ES2(l, n) & (l ≠ 1) · 21.67n≠1, which is asymptotically slightly weaker
than the lower bound given by Conlon et al [2].

4 Discussion

We believe that the lower bound in Theorem 2 is optimal for all d > 2, except for the exact
value of the constant cd. We are currently working on improving the upper bound and it
might be useful to determine the following value Cd(l, n): Let Cd(l, n) be the minimum N

such that every set of N -points in Rd in weakly convex position contains either l points on the
same (d ≠ 1)-dimensional hyperplane or n in convex position where a set of points P (µ Rd)
is said to be in weakly convex position if P ™ ˆ(conv(P )). We believe that Cd(l, n) ¥ nl

d
and

if this is true, then it immediately follows that ESd(l, n) . ESd( nl

d
). However, even if this is

possible, it remains asymptotically far from the lower bound.
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