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—— Abstract

We propose a probabilistic testing algorithm that determines with constant probability if two curves

are similar w.r.t. the discrete Fréchet distance or if they are ‘e-far’ (for 0 < € < 2) from being similar,
i.e., more than an e-fraction of the two curves must be ignored for them to become similar. The
algorithm performs O(é log é) queries where a query returns the set of vertices of the curve that lie
within a radius 0 of a specified vertex of the other curve and ¢ corresponds to a property of the two
curves. We present a class of curves for which ¢ is suffiently small so that the algorithm is sublinear.
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1 Introduction

We initiate a study of property testing for the discrete Fréchet distance. Typically in property
testing, we are given access to a (large) data set and the goal is to very quickly assess
whether the data has a certain property. Instead of the classical notation of correctness, a
property testing algorithm is considered correct if it can satisfy the following two conditions,
with a probability close to 1: First, if the input has the desired property, the algorithm
must return accept and second, if the input is ‘far’ from having the property, the algorithm
should reject the input. For more details on property testing, see [13, 1, 7]. Computational
geometry has a long tradition of using randomization and sampling to speed up algorithmic
approaches [12, 9, 10, 8]. Property testing has received some attention within computational
geometry [6, 3, 4, 5, 11, 2], but is much less explored compared to other areas.

2  Preliminaries and problem definition

Let (M,d) be a metric space. We say a curve P in (M, d) is an ordered point sequence
(p1,-..,pn) with vertices p;, € M for all i = 1,...,n. We define the length of P to be



Property Testing of Curve Similarity

qr

OO | = = = =
— OO | = ==
Y [ [ TSR S R
O\ = = = = =
ook oo
—lolorloo
—— oo —|lo

q1

p1 pr

Figure 1 Left: M; for the curves on the right with a minimum cost monotone Manhattan path.

{P) = Z?:_ll d(p;, pi+1). The subcurve of P between p; and p; is denoted by P[i, j]. A curve
P is called t-straight if for any two vertices p; and p; in P, we have £(P[i, j]) < t- d(p;, p;)-
Given two curves P = (p1,...,p,) and Q = (q1,...,qn), we say that an ordered sequence
C of elements in the n times n integer lattice [n] x [n] is a coupling of P and @, if it
starts in (1,1), ends in (n,n) and for any consecutive tuples (i, 7), (¢/,5') in C it holds that
(i',5") € {(i+1,7), (i, + 1)}. We define the discrete Fréchet distance' between P and Q as

Dx (P = i d(pi, q;)-
F(PQ) = min  max d(pi, ;)
The free space matriz of P and () with distance value ¢ is an n X n matrix My, where the
i-th column corresponds to the vertex p; of P and the j-th row corresponds to the vertex
q; of Q. The entry Mjs[i, j] has the value 0 if d(p;, ¢;) < 6 and 1 otherwise.> A monotone
Manhattan path C is a path through the free space matrix that always moves one step up or
one step to the right. We define the cost of such a path as ¢(C) = >_(; ;) cc Ms[i, j]. Note
that Dz (P, Q) < ¢ if and only if there exists a monotone Manhattan path with cost 0 from
(1,1) to (n,n). Our analysis is based on a property of the free space matrix. We first define
this property and then link the property to a certain class of well-behaved input curves.

» Definition 1 (t-local). Let M be a free space matriz of curves P and Q. We say that M
is t-local if, for any tuples (i1,j1) and (iz,j2) with Mli1,j1] = 0 = M[iq, jo|, it holds that
lix —i2| <t (24 [j1 — J2l) and [j1 — jo| <t~ (2+ |ir — i2]).

» Lemma 2. Let P and Q be t-straight curves with edge lengths in [0 /o, ad] for some constant
a > 1. Then, My is O(t)-local.

For a proof, we refer to the full version. In the full version, we show that our approach
also works if the lengths of the edges are bounded by a constant multiple of any fixed value.

» Definition 3 (query). We have access to the free space matriz via an oracle that returns a
sorted list of indices of all zero-entries in the queried row or column. We call this a query.

» Definition 4 ((¢,6)-far). Given two curves P and Q consisting of n vertices each®, we say
that P and Q are (g,0)-far from each other if there exists no monotone Manhattan path from
(1,1) to (n,n) in the d-free space matrix of cost en or less.

L The classical definition of the discrete Fréchet distance allows diagonal steps in the coupling. An easy
adaptation of our proofs to the definition with diagonal steps can be found in Appendix ?7.

2 Note we use 0 and 1 in switched roles compared to the conventions in the literature.

3 For ease of notation, our analysis assumes the input curves have the same number of vertices.
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» Definition 5 (Fréchet-tester). Assume we are given query-access to two curves P and Q,
and we are given values § > 0 and 0 < e < 2. If the two curves have discrete Fréchet distance
at most 6, we must return ‘yes’, and if they are (g,8)-far from each other w.r.t. the discrete
Fréchet distance, the algorithm must return ‘no’, with probability at least %.

Our goal is to design a Fréchet-tester that performs as few (sublinear in n) queries as possible.

3 Testing the discrete Fréchet distance

The idea of Algorithm 1 is to sample a number of columns and rows and check whether there
is locally a monotone Manhattan path of cost zero possible. For proofs, see the full version.

» Definition 6 (Permeability). We say a block [i,i'] of consecutive columns (resp., rows) from
index ¢ to index ' is permeable if there exists a monotone Manhattan path of cost zero that
starts in column (resp., row) i and ends in column (resp., row) i’'.

If a column or row contains only one-entries, we call it a barrier-column or barrier-row.

Algorithm 1 Fréchet-Testerl(M,t,¢)

. If M[1,1] =1 or M[n,n] =1 then return ‘no’

. repeat |24

j + sample an index uniformly at random from [n].

| times:

1

2

3

4. if row j or column j of M is a barrier-column or barrier-row then return ‘no’.
5. K + [£2] —1, £« [1282] 'let J be a set of intervals and set J « 0.

6. for i =0,..., |log, ¢| do:

7. I+ sample [5¥%-] different indices uniformly at random from {0,1,..., ;% — 2}.
8. for each j € I do: add [j2!T1, (j + 2)2¢"1] to g.

9. foreach [i,j] € J do

10. if block [4, j] of consecutive columns is not permeable then return ‘no’

11. if block [, j] of consecutive rows is not permeable then return ‘no’

12. return ‘yes’.

» Theorem 7. Let P and Q be curves with n vertices such that their free space matriz is
t-local and t is known. Then, Algorithm 1 is a Fréchet-tester that needs (’)(ﬁ log g) queries.
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—— Abstract

We prove two fundamental properties of c-packed graphs: that there exists a linear-size well-separated

pair decomposition under the graph metric, and there exists a constant size balanced separator. We
apply these properties to obtain a tree cover of constant size, an exact distance oracle of near-linear
size and an approximate distance oracle of linear size.
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1 Introduction

The c-packedness property [6], proposed in 2010, is a geometric property that captures the
spatial distribution of the edges in a graph. A graph is c-packed if, for any radius r and any
ball of radius r, the length of the edges contained in the ball is at most ¢ - r. Driemel, Har-
Peled and Wenk [6] introduced the c-packedness property for polygonal curves, and showed
that one can compute the Fréchet distance between a pair of c-packed curves in near-linear
time. In 2013, Gudmundsson and Smid [11] adapted the c-packedness definition to graphs.
So far the study of c-packed graphs has been limited to Frechet distance problems [3,9,10].
An open problem is whether they have applications beyond Fréchet distance problems.

We provide the first deterministic construction of a linear-size WSPD and O(c)-size
balanced separator that are independent of the spread of the c-packed metric. We use
the separator and WSPD to obtain a tree cover of constant size, an exact distance oracle
of near-linear size and an approximate distance oracle of linear size. Our deterministic
construction of the WSPD is, to the best of our knowledge, the first that does not depend
on the aspect ratio of the metric space.

1.1 Related Work

Well-Separated Pair Decompositions (WSPD) are used for compact representation of the
quadratic distances between pairs of points in a metric. For metrics that allow for a sub-
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quadtratic size WSPD, they have therefore been used as fundamental tools to approximate
solutions to a range of proximity problems that require looking at the distances between all
pairs of points, such as nearest neighbour, diameter, stretch and minimum spanning tree.
For a point set in R?, where d is considered a constant, Callahan and Kosaraju [4] showed
that there exists a WSPD with separation factor o of size O(o%n) that can be computed in
O(nlogn + o%n) time. In contrast to this, we show that for c-packed graphs, the size of the
WSPD is not exponential in d, while maintaining that the size is linear.

Balanced separators of sublinear size have been found for a variety of graphs [1,8,14,16].
They have been used as a fundamental tool in devising efficient algorithms for graphs [1,8,15]
and in numerical analysis [13,16]. We show that c-packed graphs admit an O(c)-sized
balanced separator.

Dvordk and Norin [7] showed that if a graph admits a small size balanced separator, it
also has small treewidth. Combined with our separator results this implies that c-packed
graphs have treewidth O(c). Chaudhuri and Zaroliagis [5] designed an exact distance oracle
whose preprocessing time is single exponential in the treewidth of the graph. In contrast to
these results, our algorithms do not incur any terms exponential in c.

2 A Well-Separated Pair Decomposition for c-packed Graphs

We construct a tree that fulfills a similar purpose to split trees but for graph distances (which
are metric) between points. We call this new type of tree a §-connected tree (5-CT). Each cell,
corresponding to a cube s, of the J-connected tree is a J-connected set, meaning that points
contained in the cell are within a graph distance of at most ¢ - diam(s) from one another. To
construct the §-CT, we use a bottom up approach. The leaves of the compressed quadtree
are already d-connected sets. At higher levels of the compressed quadtree, we consider the
d-connected sets of its children, and merge together pairs of previously d-connected sets that
are also a d-connected set in the higher level. To obtain an efficient running time, we make
two observations. First, when computing the J-connected sets for a higher level, it suffices
to maintain a vertex representative for each d-connected set of the lower level. Second, to
check if a pair of sets are d-connected, it suffices to check whether their representatives are
path-connected in the cube centered at the cell but with double its radius.

To upper bound the graph diameter of the d-connected set in each cell of the §-CT we
compute the length of intersection of edges with the cell and the 3¢ surrounding cells in a
canonical grid. To do this efficiently, we construct a data structure that can be queried for
the total length of all edges that can contribute to a d-connected component contained in a
cell. We obtain the following theorem.

» Theorem 1. Given a c-packed graph G in R, for fired d, one can construct a WSPDg
with separation factor o of size O(c*on) in O(cenlogn + c3on) time, using O(cn) space.

3 A Separator Theorem for c-packed Graphs

We start with the ring separator of Har-Peled and Mendel [12], which states that for a point
set in R, one can efficiently compute a pair of balls so that n/2A% of the points are inside the
inner ball, and n/2)3 of the points are outside the outer ball, where \ is the doubling constant
of R%. Using the ring separator, we construct a max-flow instance in a similar fashion to
Gudmundsson et al. [10] to locate a cut of size O(c). This cut (1 — 1/2X3)-separates the
graph, in that it separates the graph into two components each with at most n - (1 — 1/2)3)
points. We obtain the following theorem.
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Figure 1 An illustration of iteration j of the algorithm constructing the c-connected tree.

» Theorem 2. Given a c-packed graph G in R?, where d is fized, with n vertices, one can
find a separator of size O(c) that (1 — 5i5)-separates G, in O(c*n) time.

Figure 2 An example of a max-flow instance to locate a cut of size O(c) where the vertices in A
are the sources and B the sinks. The value of the min-cut in the figure is 4.

4 Distance Oracles and a Small Tree Cover for c-packed Graphs

We combine our separator with standard techniques [15] to construct an exact distance oracle.
We use this to construct a tree cover following the approach of the celebrated “Dumbbell
Theorem” [2]. The main difficulty lies in proving the packing lemmas required for establishing
the empty-region property. A dumbbell tree, which connects the dumbbells in a group
hierarchically, is built for each group of dumbbells. The c-packedness property and the ¢-CT
enable us to do range searching and efficiently build the dumbbell trees. The tree cover
immediately implies a (1 + ¢)-approximate distance oracle for the c-packed metric.
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—— Abstract

We study the smallest intersecting and enclosing ball problems in Euclidean spaces for input objects
that are compact and convex. They link and unify many problems in computational geometry and
machine learning. We show that both problems can be modeled as zero-sum games, and propose
an approximation algorithm for the former. Specifically, the algorithm produces the first results in
high-dimensional spaces for various input objects such as convex polytopes, balls, ellipsoids, etc.

2012 ACM Subject Classification Theory of computation — Computational geometry; Theory of
computation — Approximation algorithms analysis; Theory of computation — Convex optimization

Keywords and phrases Geometric optimization, smallest intersecting ball, approximation algorithm

1 Introduction

Given n convex compact objects 1,..., 8, in d-dimensional Euclidean space, the smallest
intersecting ball (SIB) problem is to find a ball with the smallest radius 7* that intersects
every ();, while the smallest enclosing ball (SEB) problem is to find the ball with the smallest
radius R* that encloses every €2;. See Figure 1 for 2D examples of these two problems.

The SEB problem has attracted significant attention in the past decades [3, 16, 6], whereas
the SIB problem is less discussed and the understanding of SIB lags behind that of SEB.
In earlier research [2, 12], SIB are usually considered a variant of SEB. Indeed, they are
identical when the input are singleton sets. Nevertheless, as the complexity of the input
structure increases, the divergence between these two problems becomes more evident and
the SIB problem manifests greater versatility. This is demonstrable even when there are
only two objects, €23 and (5: when 2y is a compact convex set and €25 is a single point, the
SIB problem is equivalent to finding the nearest point (Euclidean projection) of Qs in the
region of €2y, and r* is half the distance from €2; to £25; when ; and €2 are both convex
compact sets, the SIB problem becomes finding the shortest line segment (a.k.a. the shortest
connector) that connects these two sets, and r* is half the minimum distance between them.
The dual problem of minimum connector is to find the hyperplane that separates 21 and s
with the largest margin [7], which corresponds to the support vector machine problems in
machine learning [1, 8]. See Figure 2 for examples of SIB in different cases.

Given the diversity of the SIB problem, one can reasonably anticipate that it poses more
substantial computational challenges than SEB. Indeed, numerous algorithms have been
proposed for solving the SEB problem, including exact and approximation algorithms [15, 13],
using optimization or coreset techniques [9, 3], and in parallel or streaming settings [6, 5],
but for SIB, most algorithms are merely designed for solving it in fixed dimensions [2, 10].

In this work, we endeavor to narrow the gap in the understanding of these two problems.
We show that both the SIB and SEB problems can be modeled as two-player zero-sum games,
which is inspired by the seminal work of Clarkson et. al. [6] in sublinear optimization. Based
on the new formulation, we propose the first approximation algorithm for the SIB problem
in arbitrary dimensions in the unit-cost RAM model, which leverages recent advances in
symmetric cone problems [4, 19]. Additional details on the SIB algorithm can be found in
the full-length preprint [18]. Software implementing the algorithm is available at [17].
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o Yo

Figure 1 Examples of the problems in 2D spaces, where the blue objects are the input and red
circles are the solutions. Left: the smallest intersecting ball. Right: the smallest enclosing ball.

SE LA

Figure 2 Many faces of the SIB problem. Left: the SEB of a point set. Middle: the nearest point
(Euclidean projection) in a convex set. Right: the shortest connector (minimum distance).

2 SIB and SEB as Zero-Sum Games

We use @ to denote concatenations of vectors, or Cartesian products of sets and vector
spaces. For instance, @7 ; u; denotes the concatenation of n vectors, namely (uq,...,u,).
Consider the zero-sum game mingep maxqeo f(p, q). We say (p*, q*) is a Nash equilibrium

iff f(p*,q*) < f(p,q*),Vp € P and f(p*,q*) > f(p*,q),Vq € Q. Moreover, f(p*,q*) is the
value of the game. Let V := @i Q;, X be the convex hull of the input, and Y defined as:

=1

Yi={ & @ns)e SRyl < s Vi€ o] omd Y5 =1},
i=1 Pt

which can be viewed as the Cartesian product of n Euclidean balls whose radii sum to one.

» Theorem 1. The SIB problem can be modeled as the following zero-sum game:

. nofe—v\\ T
min max (EB ) Y.
(®,01,...,00)EXXV YEY \i=1 0

A Nash equilibrium (denoted as (x*,v3,...,v5,y*)) of the game always exist, and the value
of the game is r*. The ball B(x*,1*) is intersecting every Q;, and v} € B(z*,r*) N Q.

» Theorem 2. The SEB problem can be modeled as the following zero-sum game:

. nofx—v\\T
min max ( b ) y.
TEX (yY,v1,...,U,)EYXV \j=1 0

A Nash equilibrium (denoted as (x*,y*,vi,...,v})) of the game always exist, and the value
of the game is R*. The ball B(x*, R*) is enclosing every ;.

10
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Table 1 Summary of the results for the SIB problem

Input Objects H Previous Work ‘ Our Result
Convex Polytopes o(M)' [10] O(W)
Axis-Aligned Bounding Boxes O(n)' [11] O(%)
Euclidean Balls O(—Zy7) [14] o( W )
Ellipsoids - O(nd” + %)

Note: d is the dimensionality. n is the number of objects. M is the total number of points. N is the number
of nonzeros in the input. R is the ratio between D and r*. w is the matrix multiplication exponent.
! Running time of exact algorithms for problems in fixed dimensions.

It is worth noting that the SIB game is a bilinear zero-sum game, where the objective
function is linear for both min- and max-player. On the other hand, the SEB game is not
bilinear as the function is not linear (and neither convex nor concave) for the max-player.

3 Algorithms

Unlike the SEB problem that is extensively studied in the literature, most algorithms for
the SIB problem are designed for fixed dimensions with limited types of input objects such
as convex polytopes [10] and axis-aligned bounding boxes [11]. The only result for SIB in
high-dimensional space is restricted to input of Euclidean balls that are pairwise disjoint [14].

Benefit from our new formulation for the SIB problem, we can utilize techniques for
bilinear zero-sum games to design an approximation algorithm for general input objects in
arbitrary dimensions. Specifically, we say (x,r) is an (1 + ¢)-approximate solution of the
SIB problem if the ball B(x,r) intersects every €2; and r < (1 4 &)r*. The algorithm works
as follows: in each iteration, we update y using an online optimization algorithm over ),
and let (x,v1,...,v,) be the best response in X x V against y. Then it can be shown that
the average point of the past iterates converges to an approximate Nash equilibrium of the
SIB game, which provides an approximate solution of the SIB problem.

» Theorem 3. Let D be the diameter of the input and let R = TQ*. Suppose the best response
can be computed in O(S) time. Then there is an iterative algorithm that computes an
(14 e)-approzimate solution of the SIB problem with running time O(W).

The complexity results in the unit-cost RAM model for the SIB problem with specific
input are shown in Table 1. See [18] for detailed analyses of our results. On the other hand,
no existing algorithm can find Nash equilibria for the SEB game due to its non-bilinear
nature. We hope for further advancement on the SEB problem under the new formulation.
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—— Abstract

The fairness of clustering algorithms has gained widespread attention across various areas in
machine learning. In this paper, we study fair k-means clustering in Euclidean space. Given a
dataset comprising several groups, the fairness constraint requires that each cluster should contain
a proportion of points from each group within specified lower and upper bounds. Due to these
fairness constraints, determining the locations of k£ centers and finding the induced partition are quite
challenging tasks. We propose a novel “Relax and Merge” framework that returns a (1 + 4p + O(e))-
approximate solution, where p is the approximate ratio of an off-the-shelf vanilla k-means algorithm
and O(e) can be an arbitrarily small positive number. If equipped with a PTAS of k-means, our
solution can achieve an approximation ratio of (5 + O(e)) with only a slight violation of the fairness
constraints, which improves the current state-of-the-art approximation guarantee. Furthermore,
using our framework, we can also obtain a (1 + 4p + O(¢))-approximate solution for the k-sparse
Wasserstein Barycenter problem, which is a fundamental optimization problem in the field of optimal
transport, and a (2 + 6p)-approximate solution for the strictly fair k-means clustering with no
violation, both of which are better than the current state-of-the-art methods. In addition, the
empirical results demonstrate that our proposed algorithm can significantly outperform baseline
approaches in terms of clustering cost.
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Relax and Merge: A Framework for Solving Fair k-Means

1 Introduction

In this paper, we consider the problem of («, 8)-fair k-means clustering that was initially
proposed by [4] and then generalized by [2].Informally speaking, we assume that the given
dataset P consists of m groups of points, and the “fairness” constraint requires that in each
obtained cluster, the points from each group should take a fraction between pre-specified
lower and upper bounds. [2] showed that a p-approximate algorithm for vanilla k-means can
provide a (2 + /p)?- approximate solution for (e, 3)-fair k-clustering with a slight violation
on the fairness constraints. Here, "violation" refers to situations where the fairness constraints
are not satisfied in the clustering solution. For example, if a fairness constraint requires each
cluster to contain at least 40% of members from a certain group, then a cluster with only
30% would constitute some violations.

Furthermore, [3] studied the “strictly” fair k-means clustering problem, where it requires
that the number of points from each group should be uniform in every cluster. Another
problem closely related to fair k-means is the so-called “k-sparse Wassertein Barycenter
(WB)” [1] . This is a fundamental concept in optimal transport theory, and it represents the
“average" or central distribution of a set of probability distributions. The formal definitions
are shown in appendix. The formal version of this paper has been published at ICLR 2025.

2  Our contributions

Our key idea relies on an important observation, where we find that the fair k-means problem
is inherently related to a classic geometric structure, “e-approximate centroid set”, which
was firstly proposed by [6]. Roughly speaking, given a dataset, an e-approximate centroid set
should contain at least one point that approximately represents the centroid location of any
subset of this given dataset. It means that the e-approximate centroid set contains not only
the approximate centroids based on the Voronoi diagram, but also the approximate centroids
of those potential fairness-preserving clusters.

Inspired by the above observation, we illustrate the relationship between fair k-means and
e-approximate centroid set first, and then propose a novel Relaxz-and-Merge framework. In
this framework, we relax the constraints on the number of clusters k; we focus on utilizing fair
constraints to cluster the data into small and fair clusters, which are then merged together
to determine the positions of k cluster centers. As shown in Table 1, our result is better
than the state of the art works [2, 3]. Equipped with a PTAS for k-means problem (e.g., the
algorithm from [5]), our algorithm yields a 5+ O(e) approximation factor.

We also present two important extensions from our work. The first extension is an
(144p+ O(e)) solution for k-sparse Wasserstein Barycenter. The second one is about strictly
fair k-means. We give a refined algorithm that yields a no-violation solution with a (2 4 6p)
approximation factor, which is better than the state of the art work [3].

In general, there are two stages in clustering with fair constraints. The first stage is to
find the proper locations of clustering centers, and the second stage is to assign all the client
points to the centers by solving an LP. The previous approaches often use the vanilla k-means
in the first stage to obtain the location of centers, and then take the fairness into account in
the second stage [2, 3]. In our proposed framework, we aim to shift the consideration of fair
constraints to the first stage, so as to achieve a lower approximation factor in the final result.
Our algorithm can be summarized in the following two steps:

Relax: We construct a relaxed solution T, i.e., an e-approximate centroid set, as
the "potential" set of clustering centers. Here, we relax the size constraint of centers to be
polynomial of n rather than exactly k, so as to achieve a sufficiently low cost. Then, we
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Table 1 Comparison of the approximation ratios for fair k-means and k-sparse WB. The “general
case” includes («, B)-fair k-means, strictly (o, 8)-fair k-means and k-sparse WB.

Algorithms Approximation ratio When p =1+ O(e) Note on the quality
Bera et al.,2019[2] 2+ p)? 94 O(e) general case
Schmidt et al.,2020[7] 55p+1 6.5+ O(e) two groups only
Bohm et al.,2021[3] (2+p)° 94 O(e) strictly only, no violation
Yang & Ding,20248] 2+ /p)? 94 O(e) k-sparse WB
Algorithm 1, now 1+4p+O(e) 54 O(e) general case
Algorithm 2, now 2+ 6p 8+ O(e) strictly only, no violation

solve an LP on T' to obtain the optimal assignment matrix ¢7.. T" and ¢7. can be viewed as
a relaxed solution for (a, §)-fair k-means, i.e., the number of centers may be more than k,
and meanwhile, the cost is bounded and the fairness constraints are also preserved. And we
adjust the location of T'. For each "potential" center ¢t € T', we update the location of ¢ to be
the corresponding cluster centroid. The adjusted T is denoted by 7 (7).

Merge: We run a p-approximate k-means algorithm on 7(7T) to obtain centers set S.
Then, we solve an LP on S to obtain the optimal assignment matrix ¢% and rounding the
solution to an integral solution by our proposed rounding technique.
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—— Abstract

We study the geodesic k-center variant where we are given a simple polygon P with a set of sites
S on the boundary of P, and the objective is to cover S with k geodesic disks of minimum radius.
Using amortized analysis, we provide an algorithm with a running time of O(nmlog(nm) + m?*)
where n is the number of vertices and m is the cardinality of S. We mainly discuss the continuous
version of this problem (the centers of the k disks can be anywhere in P), but the results can be
applied to the discrete version with minor changes.
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1 Introduction

The k-center problem is a classic optimization problem with applications in many areas,
including facility allocation and urban planning. It has been studied extensively in different
settings (see [4][5][2][1]). In this work, we consider the following variant: Given a simple
polygon P of n vertices with m sites {uy,u2,... tmy1 =u1} =5 C IP, find k centers so
that the maximum geodesic distance of any site in S to its nearest center is minimized. This
objective is equivalent to finding k& geodesic disks in P of (the same) minimum radius so that
they cover S. The problem is a generalization of [3] in which the authors considered convex
polygons, and can be seen as placing centers of interest in a domain (museum, park) so that
the maximum distance from each entrance u; to the nearest center is minimized.

We assume that the sites are ordered clockwise along the boundary. We use S(i, j) to
denote the set o